Suppr超能文献

具有本征电子自旋中心的金属有机框架中客体分子集合体的原子尺度量子传感

Atomic-Scale Quantum Sensing of Ensembles of Guest Molecules in a Metal-Organic Framework with Intrinsic Electron Spin Centers.

作者信息

Kultaeva Anastasia, Pöppl Andreas, Biktagirov Timur

机构信息

University Leipzig, Faculty of Physics and Earth Science, Felix Bloch Institute for Solid State Physics, Linnestrasse 5, D-04103 Leipzig, Germany.

University Paderborn, Physics Department, D-33098 Paderborn, Germany.

出版信息

J Phys Chem Lett. 2022 Jul 28;13(29):6737-6742. doi: 10.1021/acs.jpclett.2c01429. Epub 2022 Jul 18.

Abstract

One of the exciting applications of electron-spin-based quantum sensing is the detection of distant nuclear spins of external molecular species. Here, we explore the application of a metal-organic framework (MOF) material as a host matrix for sensing spin centers. As a sensor, we employ inherent Cu ions in the structure of a Zn-doped HKUST-1 framework. As a target molecular species, we use butane gas that exhibits no specific chemical reactivity toward the inner surface of HKUST-1 and is thus randomly distributed inside the MOF pore network. By employing a conventional double-resonance pulse sequence, we can effectively detect the coupling of the distant H nuclear spins of butane to the electron spin of the sensor and gain atomic-scale insight into their spatial distribution. Thus, our proof-of-the-concept experiment demonstrates that MOFs, the materials featuring extremely large surface area and great tunability, are perfectly suited as a key element for emerging magnetic quantum sensing solutions.

摘要

基于电子自旋的量子传感的一个令人兴奋的应用是检测外部分子物种的远程核自旋。在这里,我们探索了一种金属有机框架(MOF)材料作为传感自旋中心的主体基质的应用。作为传感器,我们使用掺杂锌的HKUST-1框架结构中的固有铜离子。作为目标分子物种,我们使用丁烷气体,它对HKUST-1的内表面没有特定的化学反应性,因此随机分布在MOF孔网络内。通过采用传统的双共振脉冲序列,我们可以有效地检测丁烷远程氢核自旋与传感器电子自旋的耦合,并深入了解它们的空间分布。因此,我们的概念验证实验表明,具有极大表面积和高度可调性的MOF材料非常适合作为新兴磁量子传感解决方案的关键元素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验