Sun Lei, Yang Luming, Dou Jin-Hu, Li Jian, Skorupskii Grigorii, Mardini Michael, Tan Kong Ooi, Chen Tianyang, Sun Chenyue, Oppenheim Julius J, Griffin Robert G, Dincă Mircea, Rajh Tijana
Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois60439, United States.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.
J Am Chem Soc. 2022 Oct 19;144(41):19008-19016. doi: 10.1021/jacs.2c07692. Epub 2022 Oct 6.
Recent advancements in quantum sensing have sparked transformative detection technologies with high sensitivity, precision, and spatial resolution. Owing to their atomic-level tunability, molecular qubits and ensembles thereof are promising candidates for sensing chemical analytes. Here, we show quantum sensing of lithium ions in solution at room temperature with an ensemble of organic radicals integrated in a microporous metal-organic framework (MOF). The organic radicals exhibit electron spin coherence and microwave addressability at room temperature, thus behaving as qubits. The high surface area of the MOF promotes accessibility of the guest analytes to the organic qubits, enabling unambiguous identification of lithium ions and quantitative measurement of their concentration through relaxometric and hyperfine spectroscopic methods based on electron paramagnetic resonance (EPR) spectroscopy. The sensing principle presented in this work is applicable to other metal ions with nonzero nuclear spin.
量子传感领域的最新进展引发了具有高灵敏度、高精度和高空间分辨率的变革性检测技术。由于其原子级的可调性,分子量子比特及其集合体是传感化学分析物的有前途的候选者。在这里,我们展示了在室温下利用集成在微孔金属有机框架(MOF)中的有机自由基集合体对溶液中的锂离子进行量子传感。这些有机自由基在室温下表现出电子自旋相干性和微波可寻址性,因此可作为量子比特。MOF的高表面积促进了客体分析物与有机量子比特的接触,通过基于电子顺磁共振(EPR)光谱的弛豫测量和超精细光谱方法,能够明确识别锂离子并定量测量其浓度。这项工作中提出的传感原理适用于其他具有非零核自旋的金属离子。