Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA.
Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA.
Genome Med. 2021 May 27;13(1):95. doi: 10.1186/s13073-021-00908-9.
Understanding cell-type-specific gene regulatory mechanisms from genetic variants to diseases remains challenging. To address this, we developed a computational pipeline, scGRNom (single-cell Gene Regulatory Network prediction from multi-omics), to predict cell-type disease genes and regulatory networks including transcription factors and regulatory elements. With applications to schizophrenia and Alzheimer's disease, we predicted disease genes and regulatory networks for excitatory and inhibitory neurons, microglia, and oligodendrocytes. Further enrichment analyses revealed cross-disease and disease-specific functions and pathways at the cell-type level. Our machine learning analysis also found that cell-type disease genes improved clinical phenotype predictions. scGRNom is a general-purpose tool available at https://github.com/daifengwanglab/scGRNom .
从遗传变异到疾病,理解细胞类型特异性的基因调控机制仍然具有挑战性。为了解决这个问题,我们开发了一个计算管道,scGRNom(从多组学数据预测单细胞基因调控网络),用于预测包括转录因子和调控元件在内的细胞类型疾病基因和调控网络。我们将其应用于精神分裂症和阿尔茨海默病,预测了兴奋性和抑制性神经元、小胶质细胞和少突胶质细胞的疾病基因和调控网络。进一步的富集分析揭示了细胞类型水平的跨疾病和疾病特异性功能和途径。我们的机器学习分析还发现,细胞类型疾病基因可以改善临床表型预测。scGRNom 是一个通用工具,可在 https://github.com/daifengwanglab/scGRNom 上获得。