Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Plant Physiol Biochem. 2022 Sep 1;186:157-168. doi: 10.1016/j.plaphy.2022.07.012. Epub 2022 Jul 14.
In vitro plant culture paves the way for meeting the industrial demand of pharmaceutically valuable secondary metabolites. This study intends to monitor how callus cells of Cannabis indica respond to the simulated microgravity (clinorotation; a Man-made technology). Callus initiation resulted from the culture of the leaf explant in a medium supplemented with kinetin (0.5 mgL) and 2, 4-D (2 mgL). Calli were treated with microgravity at three exposure times (0, 3, and 5 days). The microgravity treatments increased callus biomass about 2.5-fold. The clinorotation treatments transcriptionally induced the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes about 6.2-fold. The tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) genes displayed a similar upward trend in response to microgravity. The applied treatments also stimulated the expression of the ethylene-responsive element-binding proteins (ERF1B) and WRKY1 transcription factors by an average of 7.6-fold. Moreover, the simulated microgravity triggered epigenetic modification in the DNA methylation profile. The HPLC-based assessment validated the high efficacy of the clinorotation treatments to increase the concentration of cannabinoids, including Cannabigerol (CBG) and Cannabidiol (CBD). However, the clinorotated calli contained a lower concentration of Tetrahydrocannabinol (THC) than the control group. The microgravity treatments increased concentrations of proline (79%), soluble sugars (61.3%), and proteins (21.4%) in calli. The biochemical assessment revealed that the clinorotation treatments slightly increased HO concentration. The upregulation in the activities of peroxidase, catalase, and phenylalanine ammonia-lyase enzymes resulted from the microgravity treatments. Both HPLC and molecular assessments validated the significant efficacy of microgravity to enhance the production of cannabinoids.
植物体外培养为满足药用次生代谢产物的工业需求铺平了道路。本研究旨在监测大麻愈伤组织细胞对模拟微重力(倾斜旋转;一种人为技术)的反应。通过在补充有激动素(0.5 mgL)和 2,4-D(2 mgL)的培养基中培养叶片外植体来诱导愈伤组织的起始。用微重力处理三种暴露时间(0、3 和 5 天)。微重力处理使愈伤组织生物量增加了约 2.5 倍。倾斜旋转处理使橄榄酸环化酶(OAC)和橄榄醇合酶(OLS)基因转录诱导约 6.2 倍。四氢大麻酸合酶(THCAS)和大麻二酚酸合酶(CBDAS)基因对微重力的响应也呈现出类似的上升趋势。施加的处理还刺激了乙烯响应元件结合蛋白(ERF1B)和 WRKY1 转录因子的表达,平均增加了 7.6 倍。此外,模拟微重力触发了 DNA 甲基化谱中的表观遗传修饰。基于 HPLC 的评估验证了倾斜旋转处理在提高大麻素浓度方面的高效性,包括大麻萜酚(CBG)和大麻二酚(CBD)。然而,倾斜旋转处理的愈伤组织中四氢大麻酚(THC)的浓度低于对照组。微重力处理增加了愈伤组织中脯氨酸(79%)、可溶性糖(61.3%)和蛋白质(21.4%)的浓度。生化评估显示,微重力处理略微增加了 HO 的浓度。过氧化物酶、过氧化氢酶和苯丙氨酸解氨酶酶活性的上调是由于微重力处理。HPLC 和分子评估都验证了微重力对提高大麻素产量的显著效果。