Hooker Casey A, Hillman Ethan T, Overton Jonathan C, Ortiz-Velez Adrian, Schacht Makayla, Hunnicutt Abigail, Mosier Nathan S, Solomon Kevin V
1Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093 USA.
2Laboratory of Renewable Resources Engineering (LORRE), Purdue University, 500 Central Drive, West Lafayette, IN 47907-2022 USA.
Biotechnol Biofuels. 2018 Oct 27;11:293. doi: 10.1186/s13068-018-1292-8. eCollection 2018.
Plant biomass is an abundant but underused feedstock for bioenergy production due to its complex and variable composition, which resists breakdown into fermentable sugars. These feedstocks, however, are routinely degraded by many uncommercialized microbes such as anaerobic gut fungi. These gut fungi express a broad range of carbohydrate active enzymes and are native to the digestive tracts of ruminants and hindgut fermenters. In this study, we examine gut fungal performance on these substrates as a function of composition, and the ability of this isolate to degrade inhibitory high syringyl lignin-containing forestry residues.
We isolated a novel fungal specimen from a donkey in Independence, Indiana, United States. Phylogenetic analysis of the Internal Transcribed Spacer 1 sequence classified the isolate as a member of the genus within the phylum Neocallimastigomycota ( sp. UH3-1, strain UH3-1). The isolate penetrates the substrate with an extensive rhizomycelial network and secretes many cellulose-binding enzymes, which are active on various components of lignocellulose. These activities enable the fungus to hydrolyze at least 58% of the glucan and 28% of the available xylan in untreated corn stover within 168 h and support growth on crude agricultural residues, food waste, and energy crops. Importantly, UH3-1 hydrolyzes high syringyl lignin-containing poplar that is inhibitory to many fungi with efficiencies equal to that of low syringyl lignin-containing poplar with no reduction in fungal growth. This behavior is correlated with slight remodeling of the fungal secretome whose composition adapts with substrate to express an enzyme cocktail optimized to degrade the available biomass.
sp. UH3-1, a newly isolated anaerobic gut fungus, grows on diverse untreated substrates through production of a broad range of carbohydrate active enzymes that are robust to variations in substrate composition. Additionally, UH3-1 and potentially other anaerobic fungi are resistant to inhibitory lignin composition possibly due to changes in enzyme secretion with substrate. Thus, anaerobic fungi are an attractive platform for the production of enzymes that efficiently use mixed feedstocks of variable composition for second generation biofuels. More importantly, our work suggests that the study of anaerobic fungi may reveal naturally evolved strategies to circumvent common hydrolytic inhibitors that hinder biomass usage.
植物生物质是一种丰富但未得到充分利用的生物能源生产原料,因其组成复杂且多变,难以分解为可发酵糖。然而,这些原料通常会被许多未商业化的微生物降解,如厌氧肠道真菌。这些肠道真菌表达多种碳水化合物活性酶,天然存在于反刍动物和后肠发酵动物的消化道中。在本研究中,我们研究了肠道真菌在这些底物上的性能与其组成的关系,以及该分离株降解含高紫丁香基木质素的抑制性林业残余物的能力。
我们从美国印第安纳州独立市的一头驴身上分离出一种新型真菌标本。对内部转录间隔区1序列的系统发育分析将该分离株归类为新美鞭菌门内某属的成员(新美鞭菌属UH3-1种,菌株UH3-1)。该分离株通过广泛的根状菌丝网络穿透底物,并分泌多种纤维素结合酶,这些酶对木质纤维素的各种成分都有活性。这些活性使真菌能够在168小时内水解未经处理的玉米秸秆中至少58%的葡聚糖和28%的可用木聚糖,并支持其在粗农业残余物、食物垃圾和能源作物上生长。重要的是,UH3-1能水解对许多真菌有抑制作用的含高紫丁香基木质素的杨树,其效率与含低紫丁香基木质素的杨树相同,且真菌生长没有减少。这种行为与真菌分泌组的轻微重塑相关,其组成会根据底物进行调整,以表达一种优化的酶混合物来降解可用生物质。
新美鞭菌属UH3-1种,一种新分离的厌氧肠道真菌,通过产生多种对底物组成变化具有耐受性的碳水化合物活性酶,在多种未经处理的底物上生长。此外,UH3-1以及可能的其他厌氧真菌对抑制性木质素组成具有抗性,这可能是由于酶分泌随底物的变化所致。因此,厌氧真菌是生产能有效利用组成可变的混合原料生产第二代生物燃料的酶的有吸引力的平台。更重要的是,我们的工作表明,对厌氧真菌的研究可能揭示自然进化出的规避阻碍生物质利用的常见水解抑制剂的策略。