IEEE Trans Neural Syst Rehabil Eng. 2022;30:2067-2076. doi: 10.1109/TNSRE.2022.3192448. Epub 2022 Jul 28.
Brain-computer interface (BCI) usually suffers from the problem of low recognition accuracy and large calibration time, especially when identifying motor imagery tasks for subjects with indistinct features and classifying fine grained motion control tasks by electroencephalogram (EEG)-electromyogram (EMG) fusion analysis. To fill the research gap, this paper presents an end-to-end semi-supervised learning framework for EEG classification and EEG-EMG fusion analysis. Benefiting from the proposed metric learning based label estimation strategy, sampling criterion and progressive learning scheme, the proposed framework efficiently extracts distinctive feature embedding from the unlabeled EEG samples and achieves a 5.40% improvement on BCI Competition IV Dataset IIa with 80% unlabeled samples and an average 3.35% improvement on two public BCI datasets. By employing synchronous EMG features as pseudo labels for the unlabeled EEG samples, the proposed framework further extracts deep level features of the synergistic complementarity between the EEG signals and EMG features based on the deep encoders, which improves the performance of hybrid BCI (with a 5.53% improvement for the Upper Limb Motion Dataset and an average 4.34% improvement on two hybrid datasets). Moreover, the ablation experiments show that the proposed framework can substantially improve the performance of the deep encoders (with an average 5.53% improvement). The proposed framework not only largely improves the performance of deep networks in the BCI system, but also significantly reduces the calibration time for EEG-EMG fusion analysis, which shows great potential for building an efficient and high-performance hybrid BCI for the motor rehabilitation process.
脑机接口(BCI)通常存在识别准确率低和校准时间长的问题,尤其是在识别特征不明显的被试的运动想象任务和通过脑电(EEG)-肌电(EMG)融合分析对精细运动控制任务进行分类时。为了填补这一研究空白,本文提出了一种用于 EEG 分类和 EEG-EMG 融合分析的端到端半监督学习框架。受益于所提出的基于度量学习的标签估计策略、采样准则和渐进式学习方案,该框架能够从未标记的 EEG 样本中有效地提取出有区别的特征嵌入,并在 BCI 竞赛 IV 数据集 IIa 上实现了 80%未标记样本时 5.40%的提高,在两个公共 BCI 数据集上平均提高 3.35%。通过将同步 EMG 特征用作未标记 EEG 样本的伪标签,该框架进一步基于深度编码器提取 EEG 信号和 EMG 特征的协同互补的深层次特征,从而提高了混合 BCI 的性能(上肢运动数据集提高了 5.53%,两个混合数据集的平均提高了 4.34%)。此外,消融实验表明,所提出的框架可以显著提高深度编码器的性能(平均提高 5.53%)。该框架不仅大大提高了 BCI 系统中深度网络的性能,而且显著减少了 EEG-EMG 融合分析的校准时间,这对于构建高效、高性能的运动康复过程混合 BCI 具有很大的潜力。