Suppr超能文献

多模态方法在儿童自闭症谱系障碍识别中的应用。

A Multimodal Approach for Identifying Autism Spectrum Disorders in Children.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:2003-2011. doi: 10.1109/TNSRE.2022.3192431. Epub 2022 Jul 22.

Abstract

Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper investigates from internal neurophysiological and external behavior perspectives simultaneously and proposes a new multimodal diagnosis framework for identifying ASD in children with fusion of electroencephalogram (EEG) and eye-tracking (ET) data. Specifically, we designed a two-step multimodal feature learning and fusion model based on a typical deep learning algorithm, stacked denoising autoencoder (SDAE). In the first step, two SDAE models are designed for feature learning for EEG and ET modality, respectively. Then, a third SDAE model in the second step is designed to perform multimodal fusion with learned EEG and ET features in a concatenated way. Our designed multimodal identification model can automatically capture correlations and complementarity from behavior modality and neurophysiological modality in a latent feature space, and generate informative feature representations with better discriminability and generalization for enhanced identification performance. We collected a multimodal dataset containing 40 ASD children and 50 typically developing (TD) children to evaluate our proposed method. Experimental results showed that our proposed method achieved superior performance compared with two unimodal methods and a simple feature-level fusion method, which has promising potential to provide an objective and accurate diagnosis to assist clinicians.

摘要

识别儿童自闭症谱系障碍(ASD)具有挑战性,因为 ASD 具有复杂性和异质性。目前,大多数现有方法主要依赖于具有有限信息的单一模态,并且往往无法达到令人满意的性能。为了解决这个问题,本文从内部神经生理和外部行为两个角度同时进行研究,提出了一种新的融合脑电图(EEG)和眼动追踪(ET)数据的多模态诊断框架,用于识别儿童 ASD。具体来说,我们设计了一个两步多模态特征学习和融合模型,该模型基于典型的深度学习算法,堆叠去噪自动编码器(SDAE)。在第一步中,分别为 EEG 和 ET 模态设计了两个 SDAE 模型进行特征学习。然后,在第二步中设计了第三个 SDAE 模型,以串联方式对学习到的 EEG 和 ET 特征进行多模态融合。我们设计的多模态识别模型可以自动在潜在特征空间中从行为模态和神经生理模态中捕获相关性和互补性,并生成具有更好可区分性和泛化性的信息丰富的特征表示,从而提高识别性能。我们收集了一个包含 40 名 ASD 儿童和 50 名典型发育(TD)儿童的多模态数据集,以评估我们提出的方法。实验结果表明,与两种单模态方法和一种简单的特征级融合方法相比,我们提出的方法具有更好的性能,具有为临床医生提供客观准确的诊断辅助的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验