Suppr超能文献

基于熵的自闭症谱系障碍儿童相关脑电信号特征提取与分类

[Feature exaction and classification of autism spectrum disorder children related electroencephalographic signals based on entropy].

作者信息

Zhao Jie, Ding Meng, Tong Zhen, Han Junxia, Li Xiaoli, Kang Jiannan

机构信息

Institute of Electronic Information Engineering, Hebei University, Baoding, Hebei 071000, P.R.China.

Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Apr 25;36(2):183-188. doi: 10.7507/1001-5515.201709047.

Abstract

The early diagnosis of children with autism spectrum disorders (ASD) is essential. Electroencephalography (EEG) is one of most commonly used neuroimaging techniques as the most accessible and informative method. In this study, approximate entropy (ApEn), sample entropy (SaEn), permutation entropy (PeEn) and wavelet entropy (WaEn) were extracted from EEGs of ASD child and a control group, and Student's -test was used to analyze between-group differences. Support vector machine (SVM) algorithm was utilized to build classification models for each entropy measure derived from different regions. Permutation test was applied in search for optimize subset of features, with which the SVM model achieved best performance. The results showed that the complexity of EEGs in children with autism was lower than that of the normal control group. Among all four entropies, WaEn got a better classification performance than others. Classification results vary in different regions, and the frontal lobe showed the best performance. After feature selection, six features were filtered out and the accuracy rate was increased to 84.55%, which can be convincing for assisting early diagnosis of autism.

摘要

自闭症谱系障碍(ASD)儿童的早期诊断至关重要。脑电图(EEG)作为最容易获得且信息丰富的方法,是最常用的神经成像技术之一。在本研究中,从自闭症谱系障碍儿童和对照组的脑电图中提取了近似熵(ApEn)、样本熵(SaEn)、排列熵(PeEn)和小波熵(WaEn),并使用学生t检验分析组间差异。利用支持向量机(SVM)算法为来自不同区域的每个熵度量构建分类模型。应用排列检验来寻找优化的特征子集,利用该子集SVM模型实现了最佳性能。结果表明,自闭症儿童脑电图的复杂性低于正常对照组。在所有四种熵中,小波熵的分类性能优于其他熵。不同区域的分类结果有所不同,额叶表现最佳。经过特征选择,筛选出六个特征,准确率提高到84.55%,这对于辅助自闭症的早期诊断具有说服力。

相似文献

5
EEG-based multi-feature fusion assessment for autism.基于脑电图的自闭症多特征融合评估
J Clin Neurosci. 2018 Oct;56:101-107. doi: 10.1016/j.jocn.2018.06.049. Epub 2018 Jul 6.
6
Diagnosing autism spectrum disorder using brain entropy: A fast entropy method.使用脑熵诊断自闭症谱系障碍:一种快速熵方法。
Comput Methods Programs Biomed. 2020 Jul;190:105240. doi: 10.1016/j.cmpb.2019.105240. Epub 2019 Nov 27.

本文引用的文献

3
Machine learning approach for classification of ADHD adults.用于多动症成年人分类的机器学习方法。
Int J Psychophysiol. 2014 Jul;93(1):162-6. doi: 10.1016/j.ijpsycho.2013.01.008. Epub 2013 Jan 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验