Suppr超能文献

利用大语言模型诊断自闭症相关语言障碍并识别独特特征。

Exploiting Large Language Models for Diagnosing Autism Associated Language Disorders and Identifying Distinct Features.

作者信息

Hu Chuanbo, Li Wenqi, Ruan Mindi, Yu Xiangxu, Deshpande Shalaka, Paul Lynn K, Wang Shuo, Li Xin

机构信息

Department of Computer Science, University at Albany, Albany, 12222, NY, USA.

Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, 26506, WV, USA.

出版信息

Res Sq. 2025 Jul 29:rs.3.rs-6931837. doi: 10.21203/rs.3.rs-6931837/v1.

Abstract

Diagnosing language disorders associated with autism is a complex challenge, often hampered by the subjective nature and variability of traditional assessment methods. In this study, we explored Large Language Models (LLMs) to overcome the speed and precision obstacles by enhancing sensitivity and profiling linguistic features for autism diagnosis. This research utilizes natural language understanding capabilities of LLMs to simplify and improve the diagnostic process, focusing on identifying autism-related language patterns. We showed that the proposed method demonstrated improvements over the baseline models, with over a 10% increase in both sensitivity and positive predictive value in a zero-shot learning configuration. Combining accuracy and applicability, the framework could serve as a valuable supplementary tool within the diagnostic process for ASD-related language patterns. We identified ten key features of autism-associated language disorders across scenarios. Features such as echolalia, pronoun reversal, and atypical language usage play a critical role in diagnosing ASD and informing tailored treatment plans.

摘要

诊断与自闭症相关的语言障碍是一项复杂的挑战,传统评估方法的主观性和变异性常常对此造成阻碍。在本研究中,我们探索了大语言模型(LLMs),通过提高敏感性和剖析自闭症诊断的语言特征来克服速度和精度方面的障碍。本研究利用大语言模型的自然语言理解能力来简化和改进诊断过程,重点是识别与自闭症相关的语言模式。我们表明,所提出的方法相较于基线模型有改进,在零样本学习配置下,敏感性和阳性预测值均提高了10%以上。结合准确性和适用性,该框架可作为诊断自闭症谱系障碍(ASD)相关语言模式过程中的一个有价值的辅助工具。我们在各种场景中确定了与自闭症相关的语言障碍的十个关键特征。诸如模仿言语、代词颠倒和非典型语言使用等特征在诊断ASD和制定个性化治疗方案方面起着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4adf/12324599/699ae10d3174/nihpp-rs6931837v1-f0001.jpg

相似文献

本文引用的文献

1
Can micro-expressions be used as a biomarker for autism spectrum disorder?微表情能否用作自闭症谱系障碍的生物标志物?
Front Neuroinform. 2024 Oct 3;18:1435091. doi: 10.3389/fninf.2024.1435091. eCollection 2024.
2
A Multimodal Approach for Identifying Autism Spectrum Disorders in Children.多模态方法在儿童自闭症谱系障碍识别中的应用。
IEEE Trans Neural Syst Rehabil Eng. 2022;30:2003-2011. doi: 10.1109/TNSRE.2022.3192431. Epub 2022 Jul 22.
3
Autism spectrum disorder.自闭症谱系障碍。
Nat Rev Dis Primers. 2020 Jan 16;6(1):5. doi: 10.1038/s41572-019-0138-4.
5
Autism spectrum disorder.自闭症谱系障碍。
Lancet. 2018 Aug 11;392(10146):508-520. doi: 10.1016/S0140-6736(18)31129-2. Epub 2018 Aug 2.
6
Social (pragmatic) communication disorders and autism spectrum disorder.社交(语用)沟通障碍和自闭症谱系障碍。
Arch Dis Child. 2016 Aug;101(8):745-51. doi: 10.1136/archdischild-2014-306944. Epub 2015 Dec 23.
9
Autism spectrum disorders.自闭症谱系障碍。
Eur Child Adolesc Psychiatry. 2013 Feb;22 Suppl 1:S37-42. doi: 10.1007/s00787-012-0359-5.
10
Autism spectrum disorders: clinical features and diagnosis.自闭症谱系障碍:临床特征与诊断。
Pediatr Clin North Am. 2012 Feb;59(1):19-25, ix. doi: 10.1016/j.pcl.2011.10.007.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验