Suppr超能文献

基于多模态核的判别相关分析数据融合方法:一种自动化的自闭症谱系障碍诊断系统。

Multimodal Kernel-based discriminant correlation analysis data-fusion approach: an automated autism spectrum disorder diagnostic system.

机构信息

Smart Biomedical Application Laboratory, School of Electronics, Indian Institute of Information Technology, Una, H.P., India.

出版信息

Phys Eng Sci Med. 2024 Mar;47(1):361-369. doi: 10.1007/s13246-023-01350-4. Epub 2023 Nov 20.

Abstract

Autism spectrum disorder (ASD) diagnostic systems, based on association of multimodal tools such as combination of Electroencephalogram (EEG) and eye-tracking, have emerged as an analytical to provide objective biomarkers. However, the existing feature-redundancy-based systems have lacked in providing knowledge of fusion approaches and robust feature-set. The present paper aims to reduce disorder homogeneity by proposing a multimodal diagnostic system which can incorporate multimodal data. The paper has collected simultaneous-data from three modalities (laptop-performance tool, EEG machine, and Eye-tracker) fused the recorded computational, neural and visual data. The multimodal features are analyzed via proposed multimodal Kernel-based discriminant correlation analysis (MKDCA) fusion approach and classified using state-of-the-art machine-learning classifiers. The proposed framework has considered the distinct cardinality of the feature vectors and fused the group structure among multiple samples after ranking them in increasing order. As per the results, the proposed multimodal system provided fused feature set of 11 influential features out of total 39 features. The SVM classifier has diagnosed ASD with 92% testing accuracy and 0.988 AUC(ROC). The proposed automated fusion-based system has the potential to classify disorder by reducing the disorder heterogeneity and stratifying ASD individuals into homogeneous sub-groups. In future, the correlation of reduced feature set with ASD clinical symptoms accounted by screening scales can provide clinical relevance of proposed model.

摘要

自闭症谱系障碍(ASD)诊断系统基于多模态工具的关联,例如脑电图(EEG)和眼动追踪的结合,已经成为提供客观生物标志物的分析方法。然而,现有的基于特征冗余的系统缺乏融合方法和稳健特征集的知识。本文旨在通过提出一种可以整合多模态数据的多模态诊断系统来减少障碍同质性。本文从三个模态(笔记本电脑性能工具、脑电图机和眼动追踪器)同时收集数据,融合记录的计算、神经和视觉数据。通过提出的多模态核判别相关分析(MKDCA)融合方法对多模态特征进行分析,并使用最先进的机器学习分类器进行分类。所提出的框架考虑了特征向量的不同基数,并在对多个样本进行升序排序后融合了它们之间的组结构。结果表明,所提出的多模态系统提供了融合特征集,其中有 11 个有影响力的特征,总共有 39 个特征。SVM 分类器对 ASD 的测试准确率为 92%,ROC 曲线下面积(AUC)为 0.988。所提出的基于自动融合的系统通过减少障碍异质性和将 ASD 个体分为同质亚组,具有分类障碍的潜力。在未来,减少特征集与通过筛选量表评估的 ASD 临床症状的相关性,可以为所提出模型提供临床相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验