Suppr超能文献

雷达记录的儿童生命体征公共数据集和基于深度学习的车辆应用年龄组分类框架。

Radar Recorded Child Vital Sign Public Dataset and Deep Learning-Based Age Group Classification Framework for Vehicular Application.

机构信息

Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea.

Electronics Convenience Control Evaluation Team, Hyundai Motor Company, Gyeonggi 18280, Korea.

出版信息

Sensors (Basel). 2021 Mar 31;21(7):2412. doi: 10.3390/s21072412.

Abstract

The ongoing intense development of short-range radar systems and their improved capability of measuring small movements make these systems reliable solutions for the extraction of human vital signs in a contactless fashion. The continuous contactless monitoring of vital signs can be considered in a wide range of applications, such as remote healthcare solutions and context-aware smart sensor development. Currently, the provision of radar-recorded datasets of human vital signs is still an open issue. In this paper, we present a new frequency-modulated continuous wave (FMCW) radar-recorded vital sign dataset for 50 children aged less than 13 years. A clinically approved vital sign monitoring sensor was also deployed as a reference, and data from both sensors were time-synchronized. With the presented dataset, a new child age-group classification system based on GoogLeNet is proposed to develop a child safety sensor for smart vehicles. The radar-recorded vital signs of children are divided into several age groups, and the GoogLeNet framework is trained to predict the age of unknown human test subjects.

摘要

短程雷达系统的持续深入发展及其在测量微小运动方面能力的提高,使得这些系统成为非接触式提取人体生命体征的可靠解决方案。生命体征的连续非接触式监测可应用于广泛的领域,例如远程医疗解决方案和情境感知智能传感器的开发。目前,提供雷达记录的人体生命体征数据集仍然是一个悬而未决的问题。在本文中,我们提出了一个新的调频连续波(FMCW)雷达记录的生命体征数据集,其中包含 50 名年龄小于 13 岁的儿童。同时,还部署了一个经过临床认可的生命体征监测传感器作为参考,并对两个传感器的数据进行了时间同步。基于该数据集,我们提出了一个新的基于 GoogLeNet 的儿童年龄组分类系统,用于开发用于智能车辆的儿童安全传感器。我们将儿童的雷达记录生命体征分为几个年龄组,并使用 GoogLeNet 框架来预测未知人类测试对象的年龄。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eba/8036835/9d61abfa6415/sensors-21-02412-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验