Suppr超能文献

使用三维高分辨率 ConvNets 合成磁共振图像对比增强。

Synthesizing MR Image Contrast Enhancement Using 3D High-Resolution ConvNets.

出版信息

IEEE Trans Biomed Eng. 2023 Feb;70(2):401-412. doi: 10.1109/TBME.2022.3192309. Epub 2023 Jan 19.

Abstract

OBJECTIVE

Gadolinium-based contrast agents (GBCAs) have been widely used to better visualize disease in brain magnetic resonance imaging (MRI). However, gadolinium deposition within the brain and body has raised safety concerns about the use of GBCAs. Therefore, the development of novel approaches that can decrease or even eliminate GBCA exposure while providing similar contrast information would be of significant use clinically.

METHODS

In this work, we present a deep learning based approach for contrast-enhanced T1 synthesis on brain tumor patients. A 3D high-resolution fully convolutional network (FCN), which maintains high resolution information through processing and aggregates multi-scale information in parallel, is designed to map pre-contrast MRI sequences to contrast-enhanced MRI sequences. Specifically, three pre-contrast MRI sequences, T1, T2 and apparent diffusion coefficient map (ADC), are utilized as inputs and the post-contrast T1 sequences are utilized as target output. To alleviate the data imbalance problem between normal tissues and the tumor regions, we introduce a local loss to improve the contribution of the tumor regions, which leads to better enhancement results on tumors.

RESULTS

Extensive quantitative and visual assessments are performed, with our proposed model achieving a PSNR of 28.24 dB in the brain and 21.2 dB in tumor regions.

CONCLUSION AND SIGNIFICANCE

Our results suggest the potential of substituting GBCAs with synthetic contrast images generated via deep learning.

摘要

目的

钆基造影剂(GBCA)已广泛用于改善脑磁共振成像(MRI)中的疾病可视化。然而,脑内和体内的钆沉积引起了人们对 GBCA 使用的安全性担忧。因此,开发能够降低甚至消除 GBCA 暴露的新方法,同时提供类似的对比信息,在临床上将具有重要意义。

方法

在这项工作中,我们提出了一种基于深度学习的脑肿瘤患者对比增强 T1 合成方法。我们设计了一个 3D 高分辨率全卷积网络(FCN),通过处理和并行聚合多尺度信息来保持高分辨率信息,以将对比前 MRI 序列映射到对比增强 MRI 序列。具体来说,将三个对比前的 MRI 序列(T1、T2 和表观扩散系数图(ADC)作为输入,将对比后的 T1 序列作为目标输出。为了缓解正常组织和肿瘤区域之间的数据不平衡问题,我们引入了局部损失来提高肿瘤区域的贡献,从而在肿瘤区域获得更好的增强效果。

结果

我们进行了广泛的定量和可视化评估,所提出的模型在大脑中的 PSNR 为 28.24dB,在肿瘤区域中的 PSNR 为 21.2dB。

结论和意义

我们的结果表明,通过深度学习生成的合成对比图像可能替代 GBCA。

相似文献

9
Gadolinium contrast agent selection and optimal use for body MR imaging.钆对比剂在体部磁共振成像中的选择与优化应用
Radiol Clin North Am. 2014 Jul;52(4):637-56. doi: 10.1016/j.rcl.2014.02.004. Epub 2014 Apr 2.

引用本文的文献

6
Special Issue: Artificial Intelligence in Advanced Medical Imaging.特刊:高级医学成像中的人工智能
Bioengineering (Basel). 2024 Dec 5;11(12):1229. doi: 10.3390/bioengineering11121229.

本文引用的文献

1
Low-Rank and Framelet Based Sparsity Decomposition for Interventional MRI Reconstruction.基于低秩和框架的介入 MRI 重建稀疏分解。
IEEE Trans Biomed Eng. 2022 Jul;69(7):2294-2304. doi: 10.1109/TBME.2022.3142129. Epub 2022 Jun 17.
2
Hi-Net: Hybrid-Fusion Network for Multi-Modal MR Image Synthesis.Hi-Net:用于多模态磁共振图像合成的混合融合网络。
IEEE Trans Med Imaging. 2020 Sep;39(9):2772-2781. doi: 10.1109/TMI.2020.2975344. Epub 2020 Feb 20.
3
MedGAN: Medical image translation using GANs.MedGAN:使用 GAN 进行医学图像翻译。
Comput Med Imaging Graph. 2020 Jan;79:101684. doi: 10.1016/j.compmedimag.2019.101684. Epub 2019 Nov 22.
5
Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks.多对比度 MRI 图像合成的条件生成对抗网络。
IEEE Trans Med Imaging. 2019 Oct;38(10):2375-2388. doi: 10.1109/TMI.2019.2901750. Epub 2019 Feb 26.
6
Gadolinium Deposition in the Brain: Current Updates.钆在脑内沉积:最新进展。
Korean J Radiol. 2019 Jan;20(1):134-147. doi: 10.3348/kjr.2018.0356. Epub 2018 Dec 27.
8
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.用于压缩感知 MRI 的深度生成对抗神经网络。
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.
9
Medical Image Synthesis with Context-Aware Generative Adversarial Networks.基于上下文感知生成对抗网络的医学图像合成
Med Image Comput Comput Assist Interv. 2017 Sep;10435:417-425. doi: 10.1007/978-3-319-66179-7_48. Epub 2017 Sep 4.
10
Medical Image Synthesis with Deep Convolutional Adversarial Networks.基于深度卷积对抗网络的医学图像合成。
IEEE Trans Biomed Eng. 2018 Dec;65(12):2720-2730. doi: 10.1109/TBME.2018.2814538. Epub 2018 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验