Suppr超能文献

关于“通过非增强CT和深度学习进行大规模胰腺癌检测”的评论

Commentary on "Large-Scale Pancreatic Cancer Detection via Non-Contrast CT and Deep Learning".

作者信息

Alshybani Ibrahem

机构信息

Information Technology Division, Rosen Center for Advanced Computing, Purdue University, West Lafayette, IN, USA.

Department of Mechanical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA.

出版信息

Biomed Eng Comput Biol. 2024 Oct 31;15:11795972241293521. doi: 10.1177/11795972241293521. eCollection 2024.

Abstract

Cao et al. introduce PANDA, an AI model designed for the early detection of pancreatic ductal adenocarcinoma (PDAC) using non-contrast CT scans. While the model shows great promise, it faces several challenges. Notably, its training predominantly on East Asian datasets raises concerns about generalizability across diverse populations. Additionally, PANDA's ability to detect rare lesions, such as pancreatic neuroendocrine tumors (PNETs), could be improved by integrating other imaging modalities. High specificity is a strength, but it also poses risks of false positives, which may lead to unnecessary procedures and increased healthcare costs. Implementing a tiered diagnostic approach and expanding training data to include a wider demographic are essential steps for enhancing PANDA's clinical utility and ensuring its successful global implementation, ultimately shifting the focus from late diagnosis to proactive early detection.

摘要

曹等人介绍了PANDA,这是一种旨在利用非增强CT扫描早期检测胰腺导管腺癌(PDAC)的人工智能模型。虽然该模型显示出巨大的潜力,但它面临着几个挑战。值得注意的是,其主要基于东亚数据集进行训练引发了对不同人群泛化性的担忧。此外,通过整合其他成像模式,可以提高PANDA检测罕见病变(如胰腺神经内分泌肿瘤(PNETs))的能力。高特异性是一个优点,但也存在假阳性风险,这可能导致不必要的程序和增加医疗成本。实施分层诊断方法并扩大训练数据以纳入更广泛的人群,是提高PANDA临床效用并确保其在全球成功应用的关键步骤,最终将重点从晚期诊断转向积极的早期检测。

相似文献

3
A rare case of giant panda cancer: Pancreatic ductal adenocarcinoma.一例罕见的大熊猫癌症:胰腺导管腺癌。
Animal Model Exp Med. 2022 Dec;5(6):582-586. doi: 10.1002/ame2.12269. Epub 2022 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验