Suppr超能文献

古老的伴护推送菌毛自行分泌成超弹性之锯齿状弹簧。

Archaic chaperone-usher pili self-secrete into superelastic zigzag springs.

机构信息

Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland.

Department of Physics, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.

出版信息

Nature. 2022 Sep;609(7926):335-340. doi: 10.1038/s41586-022-05095-0. Epub 2022 Jul 19.

Abstract

Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens. However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.

摘要

黏附菌毛通过伴侣蛋白- usher 途径组装,是介导革兰氏阴性菌宿主组织定植和生物膜形成的毛发状附属物。古老的伴侣蛋白- usher 途径菌毛是最具多样性和广泛分布的伴侣蛋白- usher 途径黏附素,由于它们在最令人头疼的多药耐药病原体中普遍存在,因此是有前途的疫苗和药物靶点。然而,它们的结构和组装-分泌过程仍然未知。在这里,我们展示了介导鲍曼不动杆菌生物膜形成的原型古老 Csu 菌毛的冷冻电镜结构,鲍曼不动杆菌是一种臭名昭著的多药耐药医院获得性病原体。与经典的 1 型和 P 菌毛的厚螺旋管不同,古老的菌毛组装成一种超精细的锯齿状结构,由一个优雅的扣合机制固定。分子扣合赋予菌毛高度的机械稳定性和超弹性,据我们所知,这是生物分子中首次观察到的特性,同时使菌毛的生产更经济、更快。此外,我们证明了在细胞表面形成的扣合驱动菌毛通过外膜分泌。这些发现表明,扣合形成抑制剂可能代表一种对抗多药耐药细菌感染的新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7913/9452303/265fc7a5787d/41586_2022_5095_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验