Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110.
Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO 63110.
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2410594121. doi: 10.1073/pnas.2410594121. Epub 2024 Sep 24.
Gram-negative bacteria produce chaperone-usher pathway pili, which are extracellular protein fibers tipped with an adhesive protein that binds to a receptor with stereochemical specificity to determine host and tissue tropism. The outer-membrane usher protein, together with a periplasmic chaperone, assembles thousands of pilin subunits into a highly ordered pilus fiber. The tip adhesin in complex with its cognate chaperone activates the usher to allow extrusion across the outer membrane. The structural requirements to translocate the adhesin through the usher pore from the periplasm to the extracellular space remains incompletely understood. Here, we present a cryoelectron microscopy structure of a quaternary tip complex in the type 1 pilus system from , which consists of the usher FimD, chaperone FimC, adhesin FimH, and the tip adapter FimF. In this structure, the usher FimD is caught in the act of secreting its cognate adhesin FimH. Comparison with previous structures depicting the adhesin either first entering or having completely exited the usher pore reveals remarkable structural plasticity of the two-domain adhesin during translocation. Moreover, a piliation assay demonstrated that the structural plasticity, enabled by a flexible linker between the two domains, is a prerequisite for adhesin translocation through the usher pore and thus pilus biogenesis. Overall, this study provides molecular details of adhesin translocation across the outer membrane and elucidates a unique conformational state adopted by the adhesin during stepwise secretion through the usher pore. This study elucidates fundamental aspects of FimH and usher dynamics critical in urinary tract infections and is leading to antibiotic-sparing therapeutics.
革兰氏阴性菌产生伴侣-usher 途径菌毛,这是一种带有粘附蛋白的细胞外蛋白质纤维,与具有立体化学特异性的受体结合,决定宿主和组织趋向性。外膜 usher 蛋白与周质中的伴侣蛋白一起,将数千个菌毛亚基组装成高度有序的菌毛纤维。与同源伴侣蛋白复合的尖端粘附素激活 usher,允许其穿过外膜挤出。将粘附素从周质穿过 usher 孔转运到细胞外空间的结构要求仍不完全清楚。在这里,我们展示了 型 1 菌毛系统中的四元尖端复合物的低温电子显微镜结构,该复合物由 usher FimD、伴侣蛋白 FimC、粘附素 FimH 和尖端衔接蛋白 FimF 组成。在这个结构中,usher FimD 被捕获在分泌其同源粘附素 FimH 的过程中。与以前描绘粘附素要么首先进入要么完全离开 usher 孔的结构进行比较,揭示了在转运过程中两个结构域的粘附素具有显著的结构可塑性。此外,菌毛形成测定表明,两个结构域之间的柔性连接所赋予的结构可塑性是粘附素穿过 usher 孔转运和菌毛生物发生的先决条件。总体而言,这项研究提供了粘附素穿过外膜转运的分子细节,并阐明了粘附素在通过 usher 孔逐步分泌过程中采用的独特构象状态。这项研究阐明了在尿路感染中至关重要的 FimH 和 usher 动力学的基本方面,并正在引领抗生素节约型治疗方法。