通过扩展UTAUT理论采用新冠疫情接触者追踪应用程序:将感知到的疾病威胁作为调节变量

Adoption of Covid-19 contact tracing app by extending UTAUT theory: Perceived disease threat as moderator.

作者信息

Chopdar Prasanta Kr

机构信息

Indian Institute of Management, Shillong, India.

出版信息

Health Policy Technol. 2022 Sep;11(3):100651. doi: 10.1016/j.hlpt.2022.100651. Epub 2022 Jul 15.

Abstract

OBJECTIVES

Contact tracing applications are technological solutions that can quickly trace and notify users of their potential exposure to the Covid-19 virus and help contain the spread of the disease. However, extant research delineating the various factors predicting the adoption of contact tracing apps is scant. The study's primary objective is to develop and validate a research model based on the unified theory of acceptance and use of technology (UTAUT), health belief model (HBM), perceived privacy risk and perceived security risk to understand the adoption of contact tracing application.

METHODS

An online survey was carried out among users of the 'Aarogya Setu' contact tracing app in India. The partial least squares structural equation modelling (PLS-SEM) tool was employed to analyze data from 307 respondents.

RESULTS

The results showed that performance expectancy, social influence, and facilitating conditions positively influenced users' intention to adopt the app. In contrast, perceived privacy and security risks were significant barriers to app adoption. Perceived disease threat as a moderator mitigated the adverse impact of perceived privacy risk on users' intention to adopt contact tracing apps.

CONCLUSIONS

The current study gives insights on both drivers and barriers to the adoption of contract tracing applications. Various theoretical and practical implications of significance are provided for academicians and practitioners to effectively promote app adoption to tackle the Covid-19 pandemic.

摘要

目标

接触者追踪应用程序是一种技术解决方案,能够快速追踪并通知用户其可能接触到的新冠病毒,并有助于遏制疾病传播。然而,现有的关于预测接触者追踪应用程序采用情况的各种因素的研究很少。该研究的主要目标是基于技术接受与使用统一理论(UTAUT)、健康信念模型(HBM)、感知隐私风险和感知安全风险开发并验证一个研究模型,以了解接触者追踪应用程序的采用情况。

方法

在印度对“Aarogya Setu”接触者追踪应用程序的用户进行了在线调查。采用偏最小二乘结构方程建模(PLS-SEM)工具对307名受访者的数据进行分析。

结果

结果表明,绩效期望、社会影响和便利条件对用户采用该应用程序的意愿有积极影响。相比之下,感知隐私和安全风险是应用程序采用的重大障碍。作为调节变量的感知疾病威胁减轻了感知隐私风险对用户采用接触者追踪应用程序意愿的不利影响。

结论

本研究揭示了接触者追踪应用程序采用的驱动因素和障碍。为学者和从业者有效促进应用程序的采用以应对新冠疫情提供了各种具有重要意义的理论和实践启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc74/9283129/dc98d373e911/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索