Suppr超能文献

平行组独立成分分析(ICA)+ICA:联合估计关联功能网络变异性和结构协变,应用于精神分裂症。

Parallel group ICA+ICA: Joint estimation of linked functional network variability and structural covariation with application to schizophrenia.

机构信息

The Mind Research Network, Albuquerque, New Mexico.

Tri-institutional Center for Translational Research in Neuroimaging and Data Sciences (TReNDS) [Georgia State, Georgia Tech, Emory], Atlanta, Georgia.

出版信息

Hum Brain Mapp. 2019 Sep;40(13):3795-3809. doi: 10.1002/hbm.24632. Epub 2019 May 16.

Abstract

There is growing evidence that rather than using a single brain imaging modality to study its association with physiological or symptomatic features, the field is paying more attention to fusion of multimodal information. However, most current multimodal fusion approaches that incorporate functional magnetic resonance imaging (fMRI) are restricted to second-level 3D features, rather than the original 4D fMRI data. This trade-off is that the valuable temporal information is not utilized during the fusion step. Here we are motivated to propose a novel approach called "parallel group ICA+ICA" that incorporates temporal fMRI information from group independent component analysis (GICA) into a parallel independent component analysis (ICA) framework, aiming to enable direct fusion of first-level fMRI features with other modalities (e.g., structural MRI), which thus can detect linked functional network variability and structural covariations. Simulation results show that the proposed method yields accurate intermodality linkage detection regardless of whether it is strong or weak. When applied to real data, we identified one pair of significantly associated fMRI-sMRI components that show group difference between schizophrenia and controls in both modalities, and this linkage can be replicated in an independent cohort. Finally, multiple cognitive domain scores can be predicted by the features identified in the linked component pair by our proposed method. We also show these multimodal brain features can predict multiple cognitive scores in an independent cohort. Overall, results demonstrate the ability of parallel GICA+ICA to estimate joint information from 4D and 3D data without discarding much of the available information up front, and the potential for using this approach to identify imaging biomarkers to study brain disorders.

摘要

越来越多的证据表明,研究其与生理或症状特征的相关性,该领域不再仅仅使用单一的脑成像方式,而是更多地关注多模态信息的融合。然而,目前大多数将功能磁共振成像(fMRI)纳入的多模态融合方法都局限于二级 3D 特征,而不是原始的 4D fMRI 数据。这种权衡是在融合步骤中没有利用有价值的时间信息。在这里,我们提出了一种名为“并行组独立成分分析+独立成分分析”的新方法,该方法将组独立成分分析(GICA)的时间 fMRI 信息纳入并行独立成分分析(ICA)框架中,旨在实现将一级 fMRI 特征与其他模态(如结构磁共振成像)直接融合,从而可以检测到功能网络的变化和结构的协变。模拟结果表明,无论强度强弱,该方法都能准确地检测出跨模态的连接。当应用于真实数据时,我们在两种模态中识别出一对与精神分裂症和对照组存在显著差异的显著相关 fMRI-sMRI 成分,这种连接可以在独立的队列中复制。最后,我们提出的方法可以通过所识别的连接成分对中的特征来预测多个认知领域的分数。我们还表明,这些多模态脑特征可以在独立队列中预测多个认知分数。总体而言,结果表明并行 GICA+ICA 能够估计 4D 和 3D 数据的联合信息,而不会在前期丢弃大量可用信息,并且有可能使用这种方法来识别成像生物标志物以研究大脑疾病。

相似文献

引用本文的文献

本文引用的文献

1
Connectome-based individualized prediction of temperament trait scores.基于连接组学的个体气质特征评分预测。
Neuroimage. 2018 Dec;183:366-374. doi: 10.1016/j.neuroimage.2018.08.038. Epub 2018 Aug 17.
8
Hand classification of fMRI ICA noise components.功能磁共振成像独立成分分析(fMRI ICA)噪声成分的人工分类
Neuroimage. 2017 Jul 1;154:188-205. doi: 10.1016/j.neuroimage.2016.12.036. Epub 2016 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验