Suppr超能文献

肠道微生物衍生代谢物氧化三甲胺激活PERK以驱动促纤维化间充质分化。

Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation.

作者信息

Kim Seok-Jo, Bale Swarna, Verma Priyanka, Wan Qianqian, Ma Feiyang, Gudjonsson Johann E, Hazen Stanley L, Harms Paul W, Tsou Pei-Suen, Khanna Dinesh, Tsoi Lam C, Gupta Nilaksh, Ho Karen J, Varga John

机构信息

Division of Rheumatology, Department of Internal Medicine, The University of Michigan, Suite 7C27, 300 North Ingalls Building, Ann Arbor, MI, USA.

SCM Lifescience Co. Ltd., Incheon, Republic of Korea.

出版信息

iScience. 2022 Jun 26;25(7):104669. doi: 10.1016/j.isci.2022.104669. eCollection 2022 Jul 15.

Abstract

Intestinal dysbiosis is prominent in systemic sclerosis (SSc), but it remains unknown how it contributes to microvascular injury and fibrosis that are hallmarks of this disease. Trimethylamine (TMA) is generated by the gut microbiome and in the host converted by flavin-containing monooxygenase (FMO3) into trimethylamine N-oxide (TMAO), which has been implicated in chronic cardiovascular and metabolic diseases. Using cell culture systems and patient biopsies, we now show that TMAO reprograms skin fibroblasts, vascular endothelial cells, and adipocytic progenitor cells into myofibroblasts via the putative TMAO receptor protein R-like endoplasmic reticulum kinase (PERK). Remarkably, FMO3 was detected in skin fibroblasts and its expression stimulated by TGF-β1. Moreover, FMO3 was elevated in SSc skin biopsies and in SSc fibroblasts. A meta-organismal pathway thus might in SSc link gut microbiome to vascular remodeling and fibrosis via stromal cell reprogramming, implicating the FMO3-TMAO-PERK axis in pathogenesis, and as a promising target for therapy.

摘要

肠道微生物群失调在系统性硬化症(SSc)中很突出,但它如何导致微血管损伤和纤维化(该病的标志)仍不清楚。三甲胺(TMA)由肠道微生物群产生,并在宿主体内由含黄素单加氧酶(FMO3)转化为氧化三甲胺(TMAO),后者与慢性心血管和代谢疾病有关。利用细胞培养系统和患者活检组织,我们现在发现,TMAO通过假定的TMAO受体蛋白R样内质网激酶(PERK)将皮肤成纤维细胞、血管内皮细胞和脂肪祖细胞重编程为肌成纤维细胞。值得注意的是,在皮肤成纤维细胞中检测到了FMO3,其表达受到转化生长因子-β1的刺激。此外,在SSc皮肤活检组织和SSc成纤维细胞中FMO3水平升高。因此,一种元生物体途径可能在SSc中通过基质细胞重编程将肠道微生物群与血管重塑和纤维化联系起来,这意味着FMO3-TMAO-PERK轴参与了发病机制,并且是一个有前景的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/183a/9287188/e55b226b439d/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验