Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel.
J Am Chem Soc. 2022 Aug 3;144(30):13913-13919. doi: 10.1021/jacs.2c05562. Epub 2022 Jul 20.
Small molecule redox mediators convey interfacial electron transfer events into bulk solution and can enable diverse substrate activation mechanisms in synthetic electrocatalysis. Here, we report that 1,2-diiodo-4,5-dimethoxybenzene is an efficient electrocatalyst for C-H/E-H coupling that operates at as low as 0.5 mol % catalyst loading. Spectroscopic, crystallographic, and computational results indicate a critical role for a three-electron I-I bonding interaction in stabilizing an iodanyl radical intermediate (, formally I(II) species). As a result, the optimized catalyst operates at more than 100 mV lower potential than the related monoiodide catalyst 4-iodoanisole, which results in improved product yield, higher Faradaic efficiency, and expanded substrate scope. The isolated iodanyl radical is chemically competent in C-N bond formation. These results represent the first examples of substrate functionalization at a well-defined I(II) derivative and iodanyl radical catalysis and demonstrate one-electron pathways as a mechanistic alternative to canonical two-electron hypervalent iodine mechanisms. The observation establishes I-I redox cooperation as a new design concept for the development of metal-free redox mediators.
小分子氧化还原介体将界面电子转移事件传递到体相溶液中,并能在合成电催化中实现多种底物激活机制。在这里,我们报告 1,2-二碘-4,5-二甲氧基苯是一种高效的 C-H/E-H 偶联电催化剂,其在低至 0.5 mol%的催化剂负载下即可工作。光谱、晶体学和计算结果表明,三电子 I-I 键合相互作用在稳定碘酰基自由基中间体(,形式上为 I(II)物种)方面起着关键作用。因此,优化后的催化剂的工作电位比相关的单碘化物催化剂 4-碘苯甲醚低 100 mV 以上,这导致了更高的产物产率、更高的法拉第效率和更广泛的底物范围。分离出的碘酰基自由基在 C-N 键形成中具有化学活性。这些结果代表了在定义明确的 I(II)衍生物和碘酰基自由基催化下实现底物功能化的首例实例,并证明了单电子途径是对经典高价碘机制的一种替代机制。这一观察结果确立了 I-I 氧化还原协同作用作为开发无金属氧化还原介体的新设计概念。