代谢转换定义精原干细胞成熟。

Metabolic transitions define spermatogonial stem cell maturation.

机构信息

Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.

Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

出版信息

Hum Reprod. 2022 Aug 25;37(9):2095-2112. doi: 10.1093/humrep/deac157.

Abstract

STUDY QUESTION

Do spermatogonia, including spermatogonial stem cells (SSCs), undergo metabolic changes during prepubertal development?

SUMMARY ANSWER

Here, we show that the metabolic phenotype of prepubertal human spermatogonia is distinct from that of adult spermatogonia and that SSC development is characterized by distinct metabolic transitions from oxidative phosphorylation (OXPHOS) to anaerobic metabolism.

WHAT IS KNOWN ALREADY

Maintenance of both mouse and human adult SSCs relies on glycolysis, while embryonic SSC precursors, primordial germ cells (PGCs), exhibit an elevated dependence on OXPHOS. Neonatal porcine SSC precursors reportedly initiate a transition to an adult SSC metabolic phenotype at 2 months of development. However, when and if such a metabolic transition occurs in humans is ambiguous.

STUDY DESIGN, SIZE, DURATION: To address our research questions: (i) we performed a meta-analysis of publicly available and newly generated (current study) single-cell RNA sequencing (scRNA-Seq) datasets in order to establish a roadmap of SSC metabolic development from embryonic stages (embryonic week 6) to adulthood in humans (25 years of age) with a total of ten groups; (ii) in parallel, we analyzed single-cell RNA sequencing datasets of isolated pup (n = 3) and adult (n = 2) murine spermatogonia to determine whether a similar metabolic switch occurs; and (iii) we characterized the mechanisms that regulate these metabolic transitions during SSC maturation by conducting quantitative proteomic analysis using two different ages of prepubertal pig spermatogonia as a model, each with four independently collected cell populations.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Single testicular cells collected from 1-year, 2-year and 7-year-old human males and sorted spermatogonia isolated from 6- to 8-day (n = 3) and 4-month (n = 2) old mice were subjected to scRNA-Seq. The human sequences were individually processed and then merged with the publicly available datasets for a meta-analysis using Seurat V4 package. We then performed a pairwise differential gene expression analysis between groups of age, followed by pathways enrichment analysis using gene set enrichment analysis (cutoff of false discovery rate < 0.05). The sequences from mice were subjected to a similar workflow as described for humans. Early (1-week-old) and late (8-week-old) prepubertal pig spermatogonia were analyzed to reveal underlying cellular mechanisms of the metabolic shift using immunohistochemistry, western blot, qRT-PCR, quantitative proteomics, and culture experiments.

MAIN RESULTS AND THE ROLE OF CHANCE

Human PGCs and prepubertal human spermatogonia show an enrichment of OXPHOS-associated genes, which is downregulated at the onset of puberty (P < 0.0001). Furthermore, we demonstrate that similar metabolic changes between pup and adult spermatogonia are detectable in the mouse (P < 0.0001). In humans, the metabolic transition at puberty is also preceded by a drastic change in SSC shape at 11 years of age (P < 0.0001). Using a pig model, we reveal that this metabolic shift could be regulated by an insulin growth factor-1 dependent signaling pathway via mammalian target of rapamycin and proteasome inhibition.

LARGE SCALE DATA

New single-cell RNA sequencing datasets obtained from this study are freely available through NCBI GEO with accession number GSE196819.

LIMITATIONS, REASONS FOR CAUTION: Human prepubertal tissue samples are scarce, which led to the investigation of a low number of samples per age. Gene enrichment analysis gives only an indication about the functional state of the cells. Due to limited numbers of prepubertal human spermatogonia, porcine spermatogonia were used for further proteomic and in vitro analyses.

WIDER IMPLICATIONS OF THE FINDINGS

We show that prepubertal human spermatogonia exhibit high OXHPOS and switch to an adult-like metabolism only after 11 years of age. Prepubescent cancer survivors often suffer from infertility in adulthood. SSC transplantation could provide a powerful tool for the treatment of infertility; however, it requires high cell numbers. This work provides key insight into the dynamic metabolic requirements of human SSCs across development that would be critical in establishing ex vivo systems to support expansion and sustained function of SSCs toward clinical use.

STUDY FUNDING/COMPETING INTEREST(S): This work was funded by the NIH/NICHD R01 HD091068 and NIH/ORIP R01 OD016575 to I.D. K.E.O. was supported by R01 HD100197. S.K.M. was supported by T32 HD087194 and F31 HD101323. The authors declare no conflict of interest.

摘要

研究问题

精原细胞,包括精原干细胞(SSC),在青春期前发育过程中是否会发生代谢变化?

总结答案

在这里,我们表明,青春期前人类精原细胞的代谢表型与成年精原细胞不同,并且 SSC 的发育特征是从氧化磷酸化(OXPHOS)到无氧代谢的独特代谢转变。

已知的情况

维持小鼠和人类成年 SSC 的依赖于糖酵解,而胚胎 SSC 前体,原始生殖细胞(PGC),表现出对 OXPHOS 的依赖性升高。据报道,新生猪 SSC 前体在发育 2 个月时开始向成年 SSC 代谢表型转变。然而,在人类中,这种代谢转变何时发生以及是否发生尚不清楚。

研究设计、规模、持续时间:为了解决我们的研究问题:(i)我们对公开可用的和新生成的(当前研究)单细胞 RNA 测序(scRNA-Seq)数据集进行了荟萃分析,以建立从胚胎阶段(胚胎周 6)到成年(25 岁)人类 SSC 代谢发育的路线图,总共十个组;(ii)同时,我们分析了分离的幼鼠(n=3)和成年(n=2)小鼠的单细胞 RNA 测序数据集,以确定是否发生类似的代谢转换;(iii)我们通过使用两种不同年龄的青春期前猪精原细胞作为模型进行定量蛋白质组学分析,来描述 SSC 成熟过程中调节这些代谢转变的机制,每个模型都有四个独立收集的细胞群体。

参与者/材料、设置、方法:从 1 岁、2 岁和 7 岁的男性中收集单个睾丸细胞,并从 6-8 天大(n=3)和 4 个月大(n=2)的小鼠中分离出精原细胞,进行 scRNA-Seq。对人类序列进行单独处理,然后使用 Seurat V4 软件包将它们与公开可用的数据集合并进行荟萃分析。然后,我们在组间进行了成对的差异基因表达分析,然后使用基因集富集分析(错误发现率<0.05)进行途径富集分析。对来自小鼠的序列进行了类似于描述人类的工作流程。使用免疫组织化学、western blot、qRT-PCR、定量蛋白质组学和培养实验分析早期(1 周龄)和晚期(8 周龄)青春期前猪精原细胞,以揭示代谢转变的潜在细胞机制。

主要结果和机会的作用

人类 PGC 和青春期前人类精原细胞显示出氧化磷酸化相关基因的富集,这些基因在青春期开始时下调(P<0.0001)。此外,我们证明,在小鼠中也可以检测到幼鼠和成年精原细胞之间类似的代谢变化(P<0.0001)。在人类中,青春期的代谢转变也伴随着 11 岁时 SSC 形状的急剧变化(P<0.0001)。使用猪模型,我们揭示了这种代谢转变可以通过胰岛素样生长因子-1 依赖性信号通路通过哺乳动物靶标雷帕霉素和蛋白酶体抑制来调节。

大规模数据

本研究获得的新的单细胞 RNA 测序数据集可通过 NCBI GEO 免费获得, accession number GSE196819。

局限性、谨慎的原因:青春期前人类组织样本稀缺,导致每个年龄组的样本数量有限。基因富集分析仅能指示细胞的功能状态。由于青春期前人类精原细胞数量有限,因此使用猪精原细胞进行进一步的蛋白质组学和体外分析。

研究结果的更广泛意义

我们表明,青春期前人类精原细胞表现出高 OXHPOS,并在 11 岁后才转变为成人样代谢。青春期前癌症幸存者在成年后往往会不孕。SSC 移植可以为治疗不孕提供有力工具;然而,它需要大量的细胞。这项工作为人类 SSCs 跨发育的动态代谢需求提供了关键的见解,这对于建立支持 SSCs 扩增和持续功能的体外系统至关重要,以达到临床应用。

研究资金/利益冲突:这项工作得到了 NIH/NICHD R01 HD091068 和 NIH/ORIP R01 OD016575 的资助。KEO 得到了 R01 HD100197 的支持。SKM 得到了 T32 HD087194 和 F31 HD101323 的支持。作者声明没有利益冲突。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索