Suppr超能文献

利用聚焦旋转射流纺丝技术再造心脏的螺旋结构-功能关系。

Recreating the heart's helical structure-function relationship with focused rotary jet spinning.

机构信息

Disease Biophysics Group, John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, MA 02134, USA.

Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA.

出版信息

Science. 2022 Jul 8;377(6602):180-185. doi: 10.1126/science.abl6395. Epub 2022 Jul 7.

Abstract

Helical alignments within the heart's musculature have been speculated to be important in achieving physiological pumping efficiencies. Testing this possibility is difficult, however, because it is challenging to reproduce the fine spatial features and complex structures of the heart's musculature using current techniques. Here we report focused rotary jet spinning (FRJS), an additive manufacturing approach that enables rapid fabrication of micro/nanofiber scaffolds with programmable alignments in three-dimensional geometries. Seeding these scaffolds with cardiomyocytes enabled the biofabrication of tissue-engineered ventricles, with helically aligned models displaying more uniform deformations, greater apical shortening, and increased ejection fractions compared with circumferential alignments. The ability of FRJS to control fiber arrangements in three dimensions offers a streamlined approach to fabricating tissues and organs, with this work demonstrating how helical architectures contribute to cardiac performance.

摘要

心脏肌肉中的螺旋排列结构被认为对实现生理泵送效率很重要。然而,要验证这种可能性是困难的,因为目前的技术很难复制心脏肌肉的精细空间特征和复杂结构。在这里,我们报告了聚焦旋转喷射纺丝(FRJS),这是一种增材制造方法,可快速制造具有可编程三维几何形状的微/纳米纤维支架。在这些支架上接种心肌细胞,使组织工程心室得以生物制造,与环形排列相比,螺旋排列的模型显示出更均匀的变形、更大的心尖缩短和更高的射血分数。FRJS 在三维空间中控制纤维排列的能力为制造组织和器官提供了一种简化的方法,这项工作展示了螺旋结构如何有助于心脏性能。

相似文献

2
Fibrous scaffolds for building hearts and heart parts.用于构建心脏及心脏部件的纤维支架。
Adv Drug Deliv Rev. 2016 Jan 15;96:83-102. doi: 10.1016/j.addr.2015.11.020. Epub 2015 Dec 4.
3
Nanofiber assembly by rotary jet-spinning.旋转射流纺丝法组装纳米纤维。
Nano Lett. 2010 Jun 9;10(6):2257-61. doi: 10.1021/nl101355x.

引用本文的文献

7
Spatially defined microenvironment for engineering organoids.用于构建类器官的空间定义微环境。
Biophys Rev (Melville). 2024 Oct 18;5(4):041302. doi: 10.1063/5.0198848. eCollection 2024 Dec.

本文引用的文献

2
FRESH 3D Bioprinting a Full-Size Model of the Human Heart.全新3D生物打印全尺寸人类心脏模型。
ACS Biomater Sci Eng. 2020 Nov 9;6(11):6453-6459. doi: 10.1021/acsbiomaterials.0c01133. Epub 2020 Oct 23.
9
3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts.个性化厚且可灌注心脏补片和心脏的3D打印
Adv Sci (Weinh). 2019 Apr 15;6(11):1900344. doi: 10.1002/advs.201900344. eCollection 2019 Jun 5.
10
A tissue-engineered scale model of the heart ventricle.心脏心室的组织工程学比例模型。
Nat Biomed Eng. 2018 Dec;2(12):930-941. doi: 10.1038/s41551-018-0271-5. Epub 2018 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验