Suppr超能文献

Visual Cue Effects on a Classification Accuracy Estimation Task in Immersive Scatterplots.

作者信息

Yang Fumeng, Tompkin James, Harrison Lane, Laidlaw David H

出版信息

IEEE Trans Vis Comput Graph. 2023 Dec;29(12):4858-4873. doi: 10.1109/TVCG.2022.3192364. Epub 2023 Nov 10.

Abstract

Immersive visualization in virtual reality (VR) allows us to exploit visual cues for perception in 3D space, yet few existing studies have measured the effects of visual cues. Across a desktop monitor and a head-mounted display (HMD), we assessed scatterplot designs which vary their use of visual cues-motion, shading, perspective (graphical projection), and dimensionality-on two sets of data. We conducted a user study with a summary task in which 32 participants estimated the classification accuracy of an artificial neural network from the scatterplots. With Bayesian multilevel modeling, we capture the intricate visual effects and find that no cue alone explains all the variance in estimation error. Visual motion cues generally reduce participants' estimation error; besides this motion, using other cues may increase participants' estimation error. Using an HMD, adding visual motion cues, providing a third data dimension, or showing a more complicated dataset leads to longer response times. We speculate that most visual cues may not strongly affect perception in immersive analytics unless they change people's mental model about data. In summary, by studying participants as they interpret the output from a complicated machine learning model, we advance our understanding of how to use the visual cues in immersive analytics.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验