Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.
Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2205228119. doi: 10.1073/pnas.2205228119. Epub 2022 Jul 19.
The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.
线粒体电子传递链维持着产生三磷酸腺苷 (ATP) 的质子动力势。这个过程的能量来自于还原型烟酰胺腺嘌呤二核苷酸 (NADH) 和琥珀酸的氧化,电子从这个氧化过程通过中间载体传递到氧气。复合物 IV (CIV) 作为末端氧化酶,将来自中间电子载体细胞色素的电子传递给氧气,在此过程中对质子动力势做出贡献。在 CIV 中,质子在循环过程中通过 K 和 D 途径移动。前者负责在其还原时将两个质子转移到酶的催化位点,最终与氧气和电子结合形成水。CIV 是呼吸调节的主要部位,尽管之前的研究表明类固醇结合可以调节 CIV 的活性,但对于这种调节如何发生知之甚少。在这里,我们使用动力学实验、结构测定和分子模拟相结合的方法来描述 CIV 和类固醇之间的相互作用。我们表明,具有固醇部分的分子,如糖基薯蓣皂苷元和胆甾醇半琥珀酸酯,可可逆地抑制 CIV。探测 CIV 内电子快速平衡的闪光光解实验表明,这些分子的结合抑制了通过 K 途径的质子摄取。用糖基薯蓣皂苷元对 CIV 进行单颗粒低温电子显微镜 (cryo-EM) 揭示了一个以前未被描述的邻近 K 途径的类固醇结合位点,分子模拟表明类固醇结合调节了该途径中关键残基的构象动力学和质子转移动力学。固醇基团的结合构象为 CIV 催化循环中的可能结构门控机制提供了线索。