Suppr超能文献

基于自噬相关基因的前列腺癌特征分析及定量风险分层列线图的建立。

Signature for Prostate Cancer Based on Autophagy-Related Genes and a Nomogram for Quantitative Risk Stratification.

机构信息

Department of Urology, The First Affiliated Hospital of Anhui Medical University; Institute of Urology, Anhui Medical University; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.

Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.

出版信息

Dis Markers. 2022 Jul 7;2022:7598942. doi: 10.1155/2022/7598942. eCollection 2022.

Abstract

BACKGROUND

Prostate cancer (PCa) ranks as the most common malignancy and the second leading cause of cancer-related death among males worldwide. The essential role of autophagy in the progression of PCa and treatment resistance has been preliminarily revealed. However, comprehensive molecular elucidations of the correlation between PCa and autophagy are rare.

METHOD

We obtained transcription information and corresponding clinicopathological profiles of PCa patients from TCGA, MSKCC, and GEO datasets. LAASO analysis was employed to select gene signatures and estimate the autophagy score for each patient. Correlations between the signature and prognosis of PCa were investigated by K-M and multivariate Cox regression analyses. A nomogram was established on the basis of the above results. Further validations relied on ROC, calibration analysis, decision curve analysis, and external cohorts. Variable activated signaling pathways were revealed using GSVA algorithms, and the genetic alteration landscape was elucidated via the oncodrive module from the "maftools" R package. In addition, we also examined the therapeutic role of the signature based on phenotype data from GDSC 2016.

RESULT

Six autophagy-related genes were eventually selected to establish the signature, including , , , , , and . We used these genes and corresponding coefficients to calculate an autophagy score (AutS) for each patient in this study. A high AutS group and a low AutS group were divided on the mean AutS of the patients. Longer overall survival, higher Gleason score and PSA, and better response to ADT were observed in patients with high AutS. Meanwhile, we found that high AutS PCa was related to more proliferation-associated signaling activation and higher genetic mutation frequencies, manifesting a poor prognosis. A nomogram was constructed based on GS, T stage, PSA, and AutS as covariates. Its discriminative efficacy and clinical value were validated using robust statistical methods. Finally, we tested its prognostic value through two external cohorts and six published signatures.

CONCLUSION

The autophagy-related gene signature is a highly discriminative model for risk stratification and drug therapy in PCa, and a nomogram incorporating AutS might be a promising tool for precision medicine.

摘要

背景

前列腺癌(PCa)是全球男性中最常见的恶性肿瘤和癌症相关死亡的第二大主要原因。自噬在 PCa 的进展和治疗耐药性中的重要作用已初步揭示。然而,PCa 与自噬之间的综合分子关系仍鲜有报道。

方法

我们从 TCGA、MSKCC 和 GEO 数据集获取了 PCa 患者的转录信息和相应的临床病理特征。采用 LAASO 分析筛选基因特征,并估计每位患者的自噬评分。通过 K-M 和多变量 Cox 回归分析研究了特征与 PCa 预后之间的相关性。基于上述结果建立了列线图。进一步的验证依赖于 ROC、校准分析、决策曲线分析和外部队列。通过 GSVA 算法揭示了激活的信号通路,通过 "maftools" R 包中的 oncodrive 模块阐明了遗传改变图谱。此外,我们还根据 GDSC 2016 的表型数据检查了特征的治疗作用。

结果

最终选择了六个自噬相关基因来建立特征,包括、、、、、和。我们使用这些基因和相应的系数来计算本研究中每位患者的自噬评分(AutS)。根据患者 AutS 的平均值将患者分为高 AutS 组和低 AutS 组。高 AutS 组的总体生存率更长,Gleason 评分和 PSA 更高,对 ADT 的反应更好。同时,我们发现高 AutS PCa 与更多与增殖相关的信号激活和更高的遗传突变频率相关,表现出不良预后。基于 GS、T 期、PSA 和 AutS 作为协变量构建了列线图。使用稳健的统计方法验证了其判别效能和临床价值。最后,我们通过两个外部队列和六个已发表的特征测试了其预后价值。

结论

自噬相关基因特征是 PCa 风险分层和药物治疗的高度区分模型,包含 AutS 的列线图可能是精准医学的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a73/9293571/431ba6adbf27/DM2022-7598942.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验