Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Lucknow, 229001, India.
Arch Toxicol. 2023 Apr;97(4):963-979. doi: 10.1007/s00204-023-03471-x. Epub 2023 Mar 7.
The use of nanomaterials in medicine depends largely on nanotoxicological evaluation in order to ensure safe application on living organisms. Artificial intelligence (AI) and machine learning (MI) can be used to analyze and interpret large amounts of data in the field of toxicology, such as data from toxicological databases and high-content image-based screening data. Physiologically based pharmacokinetic (PBPK) models and nano-quantitative structure-activity relationship (QSAR) models can be used to predict the behavior and toxic effects of nanomaterials, respectively. PBPK and Nano-QSAR are prominent ML tool for harmful event analysis that is used to understand the mechanisms by which chemical compounds can cause toxic effects, while toxicogenomics is the study of the genetic basis of toxic responses in living organisms. Despite the potential of these methods, there are still many challenges and uncertainties that need to be addressed in the field. In this review, we provide an overview of artificial intelligence (AI) and machine learning (ML) techniques in nanomedicine and nanotoxicology to better understand the potential toxic effects of these materials at the nanoscale.
纳米材料在医学中的应用在很大程度上取决于纳米毒理学评价,以确保其在生物体上的安全应用。人工智能 (AI) 和机器学习 (ML) 可用于分析和解释毒理学领域的大量数据,例如来自毒理学数据库和基于高内涵图像的筛选数据的数据。生理相关药代动力学 (PBPK) 模型和纳米定量构效关系 (QSAR) 模型可分别用于预测纳米材料的行为和毒性效应。PBPK 和 Nano-QSAR 是用于分析有害事件的突出 ML 工具,用于了解化合物如何引起毒性效应的机制,而毒代基因组学是研究生物体中毒性反应的遗传基础。尽管这些方法具有潜力,但在该领域仍存在许多需要解决的挑战和不确定性。在这篇综述中,我们提供了纳米医学和纳米毒理学中人工智能 (AI) 和机器学习 (ML) 技术的概述,以更好地了解这些纳米材料的潜在毒性效应。