Suppr超能文献

通过混合纳米纤维进行高级药物传递调节可增强干细胞分化。

Advanced Drug Delivery Modulation via Hybrid Nanofibers Enhances Stem Cell Differentiation.

机构信息

Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Aug 3;14(30):34488-34501. doi: 10.1021/acsami.2c10288. Epub 2022 Jul 21.

Abstract

Seamlessly integrating soluble factors onto biomedical scaffolds with a precisely manufactured topography for efficient cell control remains elusive since many scaffold fabrication techniques degrade payloads. Surface adsorption of payloads onto synthesized nanoscaffolds retains bioactivity by removing exposure to harsh processing conditions at the expense of inefficient drug loading and uncontrolled release. Herein, we present a nanomaterial composite scaffold paradigm to improve physicochemical surface adsorption pharmacokinetics. As a proof of concept, we integrated graphene oxide (GO) and manganese dioxide (MnO) nanosheets onto nanofibers to increase loading capacity and tune drug release. Non-degradable GO enhances payload retention, while biodegradable MnO enables cell-responsive drug release. To demonstrate the utility of this hybrid nanomaterial scaffold paradigm for tissue engineering, we adsorbed payloads ranging from small molecules to proteins onto the scaffold to induce myogenesis and osteogenesis for multiple stem cell lines. Scaffolds with adsorbed payloads enabled more efficient differentiation than media supplementation using equivalent quantities of differentiation factors. We attribute this increased efficacy to a reverse uptake mechanism whereby payloads are localized around seeded cells, increasing delivery efficiency for guiding differentiation. Additionally, we demonstrate spatial control over cells since differentiation factors are delivered locally through the scaffold. When co-culturing scaffolds with and without adsorbed payloads, only cells seeded on payload-adsorbed scaffolds underwent differentiation. With this modular technology being capable of enhancing multiple differentiation fates for specific cell lines, this technology provides a promising alternative for current tissue engineering scaffolds.

摘要

将可溶因子与具有精确制造的拓扑结构的生物医学支架无缝集成,以实现高效的细胞控制,这一目标仍然难以实现,因为许多支架制造技术会降解有效载荷。通过将有效载荷表面吸附到合成纳米支架上,可以避免暴露在苛刻的处理条件下,从而保留生物活性,但这是以药物负载效率低和释放不可控为代价的。在此,我们提出了一种纳米复合材料支架范例,以改善物理化学表面吸附药代动力学。作为概念验证,我们将氧化石墨烯 (GO) 和二氧化锰 (MnO) 纳米片整合到纳米纤维上,以提高载药量并调节药物释放。不可降解的 GO 增强了有效载荷的保留,而可生物降解的 MnO 则实现了细胞响应性药物释放。为了证明这种混合纳米材料支架范例在组织工程中的实用性,我们将从小分子到蛋白质的各种有效载荷吸附到支架上,以诱导多种干细胞系的肌生成和骨生成。与使用等量分化因子的培养基补充相比,具有吸附有效载荷的支架可实现更有效的分化。我们将这种增强的功效归因于一种反向摄取机制,其中有效载荷被定位在接种细胞周围,从而提高了用于指导分化的递送效率。此外,我们证明了对细胞的空间控制,因为分化因子通过支架局部递送。在共培养具有和不具有吸附有效载荷的支架时,只有在吸附有效载荷的支架上接种的细胞才会发生分化。由于这种模块化技术能够增强特定细胞系的多种分化命运,因此它为当前的组织工程支架提供了一种有前途的替代方案。

相似文献

本文引用的文献

2
Hydrogels in the clinic.临床中的水凝胶。
Bioeng Transl Med. 2020 Apr 3;5(2):e10158. doi: 10.1002/btm2.10158. eCollection 2020 May.
4
Manganese dioxide nanosheets: from preparation to biomedical applications.二氧化锰纳米片:从制备到生物医学应用。
Int J Nanomedicine. 2019 Jul 3;14:4781-4800. doi: 10.2147/IJN.S207666. eCollection 2019.
6
Stem cells: past, present, and future.干细胞:过去、现在和未来。
Stem Cell Res Ther. 2019 Feb 26;10(1):68. doi: 10.1186/s13287-019-1165-5.
7
Biomimetic delivery of signals for bone tissue engineering.用于骨组织工程的信号仿生递送
Bone Res. 2018 Aug 29;6:25. doi: 10.1038/s41413-018-0025-8. eCollection 2018.
9
Designing hydrogels for controlled drug delivery.设计用于控释给药的水凝胶。
Nat Rev Mater. 2016 Dec;1(12). doi: 10.1038/natrevmats.2016.71. Epub 2016 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验