Shin Jungwoo, Gamage Geethal Amila, Ding Zhiwei, Chen Ke, Tian Fei, Qian Xin, Zhou Jiawei, Lee Hwijong, Zhou Jianshi, Shi Li, Nguyen Thanh, Han Fei, Li Mingda, Broido David, Schmidt Aaron, Ren Zhifeng, Chen Gang
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA.
Science. 2022 Jul 22;377(6604):437-440. doi: 10.1126/science.abn4290. Epub 2022 Jul 21.
Semiconductors with high thermal conductivity and electron-hole mobility are of great importance for electronic and photonic devices as well as for fundamental studies. Among the ultrahigh-thermal conductivity materials, cubic boron arsenide (c-BAs) is predicted to exhibit simultaneously high electron and hole mobilities of >1000 centimeters squared per volt per second. Using the optical transient grating technique, we experimentally measured thermal conductivity of 1200 watts per meter per kelvin and ambipolar mobility of 1600 centimeters squared per volt per second at the same locations on c-BAs samples at room temperature despite spatial variations. Ab initio calculations show that lowering ionized and neutral impurity concentrations is key to achieving high mobility and high thermal conductivity, respectively. The high ambipolar mobilities combined with the ultrahigh thermal conductivity make c-BAs a promising candidate for next-generation electronics.
具有高导热性和电子-空穴迁移率的半导体对于电子和光子器件以及基础研究都非常重要。在超高导热性材料中,立方砷化硼(c-BAs)预计将同时展现出大于1000平方厘米每伏每秒的高电子和空穴迁移率。利用光学瞬态光栅技术,我们在室温下对c-BAs样品的相同位置进行了实验测量,尽管存在空间变化,但测得的热导率为1200瓦每米每开尔文,双极性迁移率为1600平方厘米每伏每秒。从头算计算表明,降低电离杂质和中性杂质浓度分别是实现高迁移率和高导热性的关键。高双极性迁移率与超高热导率相结合,使c-BAs成为下一代电子器件的有前途的候选材料。