Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA.
mBio. 2019 Nov 5;10(6):e02668-19. doi: 10.1128/mBio.02668-19.
Photoferrotrophy is a form of anoxygenic photosynthesis whereby bacteria utilize soluble or insoluble forms of ferrous iron as an electron donor to fix carbon dioxide using light energy. They can also use poised electrodes as their electron donor via phototrophic extracellular electron uptake (phototrophic EEU). The electron uptake mechanisms underlying these processes are not well understood. Using TIE-1 as a model, we show that a single periplasmic decaheme cytochrome , PioA, and an outer membrane porin, PioB, form a complex allowing extracellular electron uptake across the outer membrane from both soluble iron and poised electrodes. We observe that PioA undergoes postsecretory proteolysis of its N terminus to produce a shorter heme-attached PioA (holo-PioA, where PioA represents the C terminus of PioA), which can exist both freely in the periplasm and in a complex with PioB. The extended N-terminal peptide controls heme attachment, and its processing is required to produce wild-type levels of holo-PioA and holo-PioAB complex. It is also conserved in PioA homologs from other phototrophs. The presence of PioAB in these organisms correlate with their ability to perform photoferrotrophy and phototrophic EEU. Some anoxygenic phototrophs use soluble iron, insoluble iron minerals (such as rust), or their proxies (poised electrodes) as electron donors for photosynthesis. However, the underlying electron uptake mechanisms are not well established. Here, we show that these phototrophs use a protein complex made of an outer membrane porin and a periplasmic decaheme cytochrome (electron transfer protein) to harvest electrons from both soluble iron and poised electrodes. This complex has two unique characteristics: (i) it lacks an extracellular cytochrome , and (ii) the periplasmic decaheme cytochrome undergoes proteolytic cleavage to produce a functional electron transfer protein. These characteristics are conserved in phototrophs harboring homologous proteins.
光亚铁营养作用是一种无氧光合作用的形式,在此过程中,细菌利用可溶性或不溶性亚铁形式作为电子供体,利用光能固定二氧化碳。它们还可以通过光合细胞外电子摄取(光合 EEU)利用预平衡电极作为电子供体。这些过程的电子摄取机制尚未得到很好的理解。使用 TIE-1 作为模型,我们表明,单个周质 decaheme 细胞色素 PioA 和外膜孔蛋白 PioB 形成一个复合物,允许从可溶性铁和预平衡电极通过外膜进行细胞外电子摄取。我们观察到 PioA 经历其 N 端的分泌后蛋白酶解,产生较短的血红素结合 PioA(全血红素 PioA,其中 PioA 代表 PioA 的 C 端),其可以自由存在于周质中并与 PioB 形成复合物。扩展的 N 端肽控制血红素结合,其加工对于产生野生型全血红素 PioA 和全血红素 PioAB 复合物是必需的。它也在其他光养生物的 PioA 同源物中保守。这些生物体中 PioAB 的存在与其进行光亚铁营养作用和光合 EEU 的能力相关。一些无氧光合作用生物使用可溶性铁、不溶性铁矿物(如铁锈)或其类似物(预平衡电极)作为光合作用的电子供体。然而,潜在的电子摄取机制尚未建立。在这里,我们表明这些光养生物使用由外膜孔蛋白和周质 decaheme 细胞色素(电子转移蛋白)组成的蛋白质复合物从可溶性铁和预平衡电极中获取电子。该复合物具有两个独特的特征:(i)它缺乏细胞外细胞色素,(ii)周质 decaheme 细胞色素经历蛋白水解切割以产生功能性电子转移蛋白。这些特征在具有同源蛋白的光养生物中保守。