Suppr超能文献

几丁质活性溶纤维多糖单加氧酶在 物种中较为罕见。

Chitin-Active Lytic Polysaccharide Monooxygenases Are Rare in Species.

机构信息

Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.

Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Appl Environ Microbiol. 2022 Aug 9;88(15):e0096822. doi: 10.1128/aem.00968-22. Epub 2022 Jul 12.

Abstract

Cellulomonas flavigena is a saprotrophic bacterium that encodes, within its genome, four predicted lytic polysaccharide monooxygenases (LPMOs) from Auxiliary Activity family 10 (AA10). We showed previously that three of these cleave the plant polysaccharide cellulose by oxidation at carbon-1 (J. Li, L. Solhi, E.D. Goddard-Borger, Y. Mattieu et al., Biotechnol Biofuels 14:29, 2021, https://doi.org/10.1186/s13068-020-01860-3). Here, we present the biochemical characterization of the fourth C. flavigena AA10 member (LPMO10D) as a chitin-active LPMO. Both the full-length LPMO10D-Carbohydrate-Binding Module family 2 (CBM2) and catalytic module-only proteins were produced in Escherichia coli using the native general secretory (Sec) signal peptide. To quantify chitinolytic activity, we developed a high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method as an alternative to the established hydrophilic interaction liquid ion chromatography coupled with UV detection (HILIC-UV) method for separation and detection of released oxidized chito-oligosaccharides. Using this method, we demonstrated that LPMO10D is strictly active on the β-allomorph of chitin, with optimal activity at pH 5 to 6 and a preference for ascorbic acid as the reducing agent. We also demonstrated the importance of the CBM2 member for both mediating enzyme localization to substrates and prolonging LPMO activity. Together with previous work, the present study defines the distinct substrate specificities of the suite of C. flavigena AA10 members. Notably, a cross-genome survey of AA10 members indicated that chitinolytic LPMOs are, in fact, rare among bacteria. Species from the genus have a long history of study due to their roles in biomass recycling in nature and corresponding potential as sources of enzymes for biotechnological applications. Although species are more commonly associated with the cleavage and utilization of plant cell wall polysaccharides, here, we show that C. flavigena produces a unique lytic polysaccharide monooxygenase with activity on β-chitin, which is found, for example, in arthropods. The limited distribution of orthologous chitinolytic LPMOs suggests adaptation of individual cellulomonads to specific nutrient niches present in soil ecosystems. This research provides new insight into the biochemical specificity of LPMOs in species and related bacteria, and it raises new questions about the physiological function of these enzymes.

摘要

黄色噬纤维菌是一种腐生细菌,其基因组内编码了四个预测的来自辅助活性家族 10(AA10)的溶细胞多糖单加氧酶(LPMO)。我们之前表明,其中三种通过在碳-1 位氧化来切割植物多糖纤维素(Li J, Solhi L, Goddard-Borger ED, Mattieu Y 等人,Biotechnol Biofuels 14:29, 2021, https://doi.org/10.1186/s13068-020-01860-3)。在这里,我们介绍了黄色噬纤维菌 AA10 成员(LPMO10D)作为一种壳质活性 LPMO 的生化特征。全长 LPMO10D-碳水化合物结合模块家族 2(CBM2)和仅催化模块蛋白均使用天然的一般分泌(Sec)信号肽在大肠杆菌中产生。为了量化壳质分解活性,我们开发了一种高效阴离子交换色谱-脉冲安培检测(HPAEC-PAD)方法,作为分离和检测释放的氧化壳寡糖的现有亲水性相互作用液相色谱与紫外检测(HILIC-UV)方法的替代方法。使用该方法,我们证明了 LPMO10D 严格地作用于壳质的β-型,在 pH5 到 6 时具有最佳活性,并且偏爱抗坏血酸作为还原剂。我们还证明了 CBM2 成员对于酶定位于底物以及延长 LPMO 活性都很重要。与之前的工作一起,本研究定义了黄色噬纤维菌 AA10 成员的独特底物特异性。值得注意的是,对 AA10 成员的全基因组调查表明,实际上,在细菌中,壳质分解 LPMO 是罕见的。由于其在自然界中生物量回收中的作用以及作为生物技术应用中酶源的相应潜力,属的物种长期以来一直是研究的对象。尽管属的物种通常与植物细胞壁多糖的切割和利用有关,但在这里,我们展示了黄色噬纤维菌产生了一种独特的溶细胞多糖单加氧酶,该酶对β-壳质具有活性,例如在节肢动物中就发现了β-壳质。同源壳质分解 LPMO 的有限分布表明,单个纤维素单胞菌适应了土壤生态系统中特定的营养小生境。这项研究为 LPMO 在属和相关细菌中的生化特异性提供了新的见解,并提出了关于这些酶的生理功能的新问题。

相似文献

1
Chitin-Active Lytic Polysaccharide Monooxygenases Are Rare in Species.
Appl Environ Microbiol. 2022 Aug 9;88(15):e0096822. doi: 10.1128/aem.00968-22. Epub 2022 Jul 12.
2
Functional analysis of a novel lytic polysaccharide monooxygenase from Streptomyces griseus on cellulose and chitin.
Int J Biol Macromol. 2020 Dec 1;164:2085-2091. doi: 10.1016/j.ijbiomac.2020.08.015. Epub 2020 Aug 4.
3
The AA10 LPMO is active on fungal cell wall chitin.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0057323. doi: 10.1128/aem.00573-23. Epub 2023 Sep 13.
4
Four cellulose-active lytic polysaccharide monooxygenases from Cellulomonas species.
Biotechnol Biofuels. 2021 Jan 23;14(1):29. doi: 10.1186/s13068-020-01860-3.
5
Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity.
J Biol Chem. 2019 Dec 13;294(50):19349-19364. doi: 10.1074/jbc.RA119.010056. Epub 2019 Oct 27.
7
Structural and binding studies of a new chitin-active AA10 lytic polysaccharide monooxygenase from the marine bacterium Vibrio campbellii.
Acta Crystallogr D Struct Biol. 2023 Jun 1;79(Pt 6):479-497. doi: 10.1107/S2059798323003261. Epub 2023 May 30.
9
Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases.
Biochemistry. 2014 Mar 18;53(10):1647-56. doi: 10.1021/bi5000433. Epub 2014 Mar 5.
10
A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin.
J Biol Chem. 2020 Jul 3;295(27):9134-9146. doi: 10.1074/jbc.RA120.013040. Epub 2020 May 12.

引用本文的文献

2
Genomic Exploration of a Chitinolytic PMB5 Strain from European mantis ().
Curr Issues Mol Biol. 2024 Aug 24;46(9):9359-9375. doi: 10.3390/cimb46090554.
5
Functional characterization of fungal lytic polysaccharide monooxygenases for cellulose surface oxidation.
Biotechnol Biofuels Bioprod. 2023 Sep 7;16(1):132. doi: 10.1186/s13068-023-02383-3.

本文引用的文献

1
Role for a Lytic Polysaccharide Monooxygenase in Cell Wall Remodeling in Streptomyces coelicolor.
mBio. 2022 Apr 26;13(2):e0045622. doi: 10.1128/mbio.00456-22. Epub 2022 Mar 31.
3
Structural Polymorphism of Chitin and Chitosan in Fungal Cell Walls From Solid-State NMR and Principal Component Analysis.
Front Mol Biosci. 2021 Aug 25;8:727053. doi: 10.3389/fmolb.2021.727053. eCollection 2021.
4
Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes.
Science. 2021 Aug 13;373(6556):774-779. doi: 10.1126/science.abj1342.
8
Four cellulose-active lytic polysaccharide monooxygenases from Cellulomonas species.
Biotechnol Biofuels. 2021 Jan 23;14(1):29. doi: 10.1186/s13068-020-01860-3.
10
Carbohydrate Binding Modules: Diversity of Domain Architecture in Amylases and Cellulases From Filamentous Microorganisms.
Front Bioeng Biotechnol. 2020 Jul 31;8:871. doi: 10.3389/fbioe.2020.00871. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验