Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.
Department of Physical Chemistry I, Ruhr-University Bochum, 44801 Bochum, Germany.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2216028120. doi: 10.1073/pnas.2216028120. Epub 2023 Apr 6.
The gamma-interferon (IFNγ)-inducible guanylate-binding proteins (GBPs) promote host defense against gram-negative cytosolic bacteria in part through the induction of an inflammatory cell death pathway called pyroptosis. To activate pyroptosis, GBPs facilitate sensing of the gram-negative bacterial outer membrane component lipopolysaccharide (LPS) by the noncanonical caspase-4 inflammasome. There are seven human GBP paralogs, and it is unclear how each GBP contributes to LPS sensing and pyroptosis induction. GBP1 forms a multimeric microcapsule on the surface of cytosolic bacteria through direct interactions with LPS. The GBP1 microcapsule recruits caspase-4 to bacteria, a process deemed essential for caspase-4 activation. In contrast to GBP1, closely related paralog GBP2 is unable to bind bacteria on its own but requires GBP1 for direct bacterial binding. Unexpectedly, we find that GBP2 overexpression can restore gram-negative-induced pyroptosis in GBP1 cells, without GBP2 binding to the bacterial surface. A mutant of GBP1 that lacks the triple arginine motif required for microcapsule formation also rescues pyroptosis in GBP1 cells, showing that binding to bacteria is dispensable for GBPs to promote pyroptosis. Instead, we find that GBP2, like GBP1, directly binds and aggregates "free" LPS through protein polymerization. We demonstrate that supplementation of either recombinant polymerized GBP1 or GBP2 to an in vitro reaction is sufficient to enhance LPS-induced caspase-4 activation. This provides a revised mechanistic framework for noncanonical inflammasome activation where GBP1 or GBP2 assembles cytosol-contaminating LPS into a protein-LPS interface for caspase-4 activation as part of a coordinated host response to gram-negative bacterial infections.
γ-干扰素(IFNγ)诱导的鸟苷酸结合蛋白(GBP)通过诱导一种称为细胞焦亡的炎症性细胞死亡途径来促进宿主对革兰氏阴性胞质细菌的防御。为了激活细胞焦亡,GBP 促进非典型半胱天冬酶-4 炎性小体识别革兰氏阴性细菌外膜成分脂多糖(LPS)。人类有 7 种 GBP 基因,不清楚每种 GBP 如何促进 LPS 感应和细胞焦亡诱导。GBP1 通过与 LPS 的直接相互作用在胞质细菌表面形成多聚体微胶囊。GBP1 微胶囊将半胱天冬酶-4 募集到细菌上,这一过程被认为对半胱天冬酶-4 的激活至关重要。与 GBP1 相反,密切相关的 GBP2 自身不能与细菌结合,但需要 GBP1 进行直接细菌结合。出乎意料的是,我们发现 GBP2 过表达可以在 GBP1 细胞中恢复革兰氏阴性诱导的细胞焦亡,而不需要 GBP2 与细菌表面结合。缺乏形成微胶囊所需的三精氨酸基序的 GBP1 突变体也可以挽救 GBP1 细胞中的细胞焦亡,表明与细菌的结合对于 GBPs 促进细胞焦亡是可有可无的。相反,我们发现 GBP2 像 GBP1 一样,通过蛋白质聚合直接结合和聚集“游离”LPS。我们证明,将重组聚合的 GBP1 或 GBP2 补充到体外反应中足以增强 LPS 诱导的半胱天冬酶-4 活化。这为非典型炎性小体激活提供了一个修正的机制框架,其中 GBP1 或 GBP2 将污染细胞质的 LPS 组装成一个蛋白-LPS 界面,以激活半胱天冬酶-4,作为宿主对革兰氏阴性细菌感染的协调反应的一部分。