文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Semiconducting polymer dots for multifunctional integrated nanomedicine carriers.

作者信息

Zhang Ze, Yu Chenhao, Wu Yuyang, Wang Zhe, Xu Haotian, Yan Yining, Zhan Zhixin, Yin Shengyan

机构信息

Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China.

State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China.

出版信息

Mater Today Bio. 2024 Mar 24;26:101028. doi: 10.1016/j.mtbio.2024.101028. eCollection 2024 Jun.


DOI:10.1016/j.mtbio.2024.101028
PMID:38590985
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11000120/
Abstract

The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/f64e61a78e55/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/ca8b99c0db19/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/fc8702ef973a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/663ead879f39/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/6ecd9eea3842/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/e2abde670539/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/169a855b11fa/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/b01cd6c63144/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/c39c2f5d87a2/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/d085ca3278ba/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/2001d1d8c692/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/a71715a460bd/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/f64e61a78e55/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/ca8b99c0db19/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/fc8702ef973a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/663ead879f39/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/6ecd9eea3842/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/e2abde670539/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/169a855b11fa/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/b01cd6c63144/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/c39c2f5d87a2/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/d085ca3278ba/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/2001d1d8c692/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/a71715a460bd/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ed/11000120/f64e61a78e55/gr11.jpg

相似文献

[1]
Semiconducting polymer dots for multifunctional integrated nanomedicine carriers.

Mater Today Bio. 2024-3-24

[2]
Semiconducting Polymer Dots for Point-of-Care Biosensing and In Vivo Bioimaging: A Concise Review.

Biosensors (Basel). 2023-1-14

[3]
Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications.

Chem Sci. 2017-5-1

[4]
Near-infrared fluorescent semiconducting polymer dots with high brightness and pronounced effect of positioning alkyl chains on the comonomers.

ACS Appl Mater Interfaces. 2014-11-24

[5]
Molecular Engineering and Design of Semiconducting Polymer Dots with Narrow-Band, Near-Infrared Emission for in Vivo Biological Imaging.

ACS Nano. 2017-2-23

[6]
Recent Developments in Semiconducting Polymer Dots for Analytical Detection and NIR-II Fluorescence Imaging.

ACS Appl Bio Mater. 2021-3-15

[7]
Near Infrared Emitting Semiconductor Polymer Dots for Bioimaging and Sensing.

Sensors (Basel). 2022-9-23

[8]
Hydroporphyrin-Doped Near-Infrared-Emitting Polymer Dots for Cellular Fluorescence Imaging.

ACS Appl Mater Interfaces. 2022-5-11

[9]
Recent Advances of NIR-II Emissive Semiconducting Polymer Dots for In Vivo Tumor Fluorescence Imaging and Theranostics.

Biosensors (Basel). 2022-12-5

[10]
Brightness Enhancement of Near-Infrared Semiconducting Polymer Dots for in Vivo Whole-Body Cell Tracking in Deep Organs.

ACS Appl Mater Interfaces. 2018-8-2

引用本文的文献

[1]
Integrating Ultrabright Polymer Dots and Stereo NIR-II Imager for Assessing Anti-Angiogenic Drugs in Oral Cancer Model.

J Cell Mol Med. 2025-1

[2]
Carbonized Polymer Dots: Influence of the Carbon Nanoparticle Structure on Cell Biocompatibility.

ACS Omega. 2024-9-5

[3]
Coenzyme-A-Responsive Nanogel-Coated Electrochemical Sensor for Osteoarthritis-Detection-Based Genetic Models.

Gels. 2024-7-10

本文引用的文献

[1]
How accurately can one predict drug binding modes using AlphaFold models?

Elife. 2023-12-22

[2]
Headache research in 2023: advancing therapy and technology.

Lancet Neurol. 2024-1

[3]
Delivering drugs with microrobots.

Science. 2023-12-8

[4]
AI under the microscope: the algorithms powering the search for cells.

Nature. 2023-11

[5]
Material and Design Toolkit for Drug Delivery: State of the Art, Trends, and Challenges.

ACS Appl Mater Interfaces. 2023-12-6

[6]
Nanocrystals for Deep-Tissue Luminescence Imaging in the Near-Infrared Region.

Chem Rev. 2024-1-24

[7]
Nanoparticles in pancreatic cancer therapy: a detailed and elaborated review on patent literature.

Expert Opin Ther Pat. 2023-10

[8]
Nanosuspensions as carriers of active ingredients: Chemical composition, development methods, and their biological activities.

Food Res Int. 2023-12

[9]
Advances in photoacoustic imaging aided by nano contrast agents: special focus on role of lymphatic system imaging for cancer theranostics.

J Nanobiotechnology. 2023-11-20

[10]
Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications.

Small. 2024-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索