Suppr超能文献

嵌入氧化还原聚合物膜中的氢化酶实现可逆的氢氧化与析出

Reversible H Oxidation and Evolution by Hydrogenase Embedded in a Redox Polymer Film.

作者信息

Hardt Steffen, Stapf Stefanie, Filmon Dawit T, Birrell James A, Rüdiger Olaf, Fourmond Vincent, Léger Christophe, Plumeré Nicolas

机构信息

Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.

Campus Straubing for Biotechnology and Sustainability, Technical University Munich, Schulgasse 22, 94315 Straubing, Germany.

出版信息

Nat Catal. 2021 Mar;4(3):251-258. doi: 10.1038/s41929-021-00586-1. Epub 2021 Mar 18.

Abstract

Efficient electrocatalytic energy conversion requires the devices to function reversibly, deliver a significant current at minimal overpotential. Redox-active films can effectively embed and stabilise molecular electrocatalysts, but mediated electron transfer through the film typically makes the catalytic response irreversible. Here, we describe a redox-active film for bidirectional (oxidation or reduction) and reversible hydrogen conversion, consisting of [FeFe] hydrogenase embedded in a low-potential, 2,2'-viologen modified hydrogel. When this catalytic film served as the anode material in a H/O biofuel cell, an open circuit voltage of 1.16 V was obtained - a benchmark value near the thermodynamic limit. The same film also acted as a highly energy efficient cathode material for H evolution. We explained the catalytic properties using a kinetic model, which shows that reversibility can be achieved despite intermolecular electron transfer being slower than catalysis. This understanding of reversibility simplifies the design principles of highly efficient and stable bioelectrocatalytic films, advancing their implementation in energy conversion.

摘要

高效的电催化能量转换要求装置能够可逆运行,在最小过电位下提供可观的电流。氧化还原活性膜可以有效地包埋并稳定分子电催化剂,但通过该膜的介导电子转移通常会使催化响应不可逆。在此,我们描述了一种用于双向(氧化或还原)和可逆氢转换的氧化还原活性膜,它由嵌入低电位、2,2'-联吡啶鎓修饰水凝胶中的[FeFe]氢化酶组成。当这种催化膜用作H/O生物燃料电池的阳极材料时,获得了1.16 V的开路电压——接近热力学极限的基准值。同一膜还作为用于析氢的高能效阴极材料。我们使用动力学模型解释了催化特性,该模型表明,尽管分子间电子转移比催化慢,但仍可实现可逆性。对可逆性的这种理解简化了高效且稳定的生物电催化膜的设计原则,推动了它们在能量转换中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd35/7610533/0457739ebb9d/EMS119957-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验