Radiology Informatics Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota.
Orthopedic Surgery Artificial Intelligence Laboratory (OSAIL), Mayo Clinic, Rochester, Minnesota.
J Bone Joint Surg Am. 2022 Sep 21;104(18):1649-1658. doi: 10.2106/JBJS.21.01229. Epub 2022 Jul 21.
Establishing imaging registries for large patient cohorts is challenging because manual labeling is tedious and relying solely on DICOM (digital imaging and communications in medicine) metadata can result in errors. We endeavored to establish an automated hip and pelvic radiography registry of total hip arthroplasty (THA) patients by utilizing deep-learning pipelines. The aims of the study were (1) to utilize these automated pipelines to identify all pelvic and hip radiographs with appropriate annotation of laterality and presence or absence of implants, and (2) to automatically measure acetabular component inclination and version for THA images.
We retrospectively retrieved 846,988 hip and pelvic radiography DICOM files from 20,378 patients who underwent primary or revision THA performed at our institution from 2000 to 2020. Metadata for the files were screened followed by extraction of imaging data. Two deep-learning algorithms (an EfficientNetB3 classifier and a YOLOv5 object detector) were developed to automatically determine the radiographic appearance of all files. Additional deep-learning algorithms were utilized to automatically measure the acetabular angles on anteroposterior pelvic and lateral hip radiographs. Algorithm performance was compared with that of human annotators on a random test sample of 5,000 radiographs.
Deep-learning algorithms enabled appropriate exclusion of 209,332 DICOM files (24.7%) as misclassified non-hip/pelvic radiographs or having corrupted pixel data. The final registry was automatically curated and annotated in <8 hours and included 168,551 anteroposterior pelvic, 176,890 anteroposterior hip, 174,637 lateral hip, and 117,578 oblique hip radiographs. The algorithms achieved 99.9% accuracy, 99.6% precision, 99.5% recall, and a 99.6% F1 score in determining the radiograph appearance.
We developed a highly accurate series of deep-learning algorithms to rapidly curate and annotate THA patient radiographs. This efficient pipeline can be utilized by other institutions or registries to construct radiography databases for patient care, longitudinal surveillance, and large-scale research. The stepwise approach for establishing a radiography registry can further be utilized as a workflow guide for other anatomic areas.
Diagnostic Level IV . See Instructions for Authors for a complete description of levels of evidence.
建立大型患者队列的影像学登记处具有挑战性,因为手动标记繁琐,仅依赖 DICOM(医学数字成像和通信)元数据可能会导致错误。我们努力通过使用深度学习管道建立全髋关节置换术(THA)患者的髋关节和骨盆放射摄影自动登记处。该研究的目的是:(1)利用这些自动化管道识别所有带有适当侧别和假体存在或缺失注释的骨盆和髋关节射线照片,以及(2)自动测量 THA 图像的髋臼组件倾斜度和版本。
我们从 2000 年至 2020 年在我们机构接受初次或翻修 THA 的 20378 名患者中回顾性检索了 846988 张髋关节和骨盆放射摄影 DICOM 文件。对文件的元数据进行筛选,然后提取成像数据。开发了两种深度学习算法(EfficientNetB3 分类器和 YOLOv5 目标探测器),以自动确定所有文件的放射学表现。利用其他深度学习算法自动测量前后骨盆和侧髋关节射线照片上的髋臼角度。在 5000 张随机测试样本上,将算法性能与人工注释者进行比较。
深度学习算法能够适当排除 209332 张 DICOM 文件(24.7%),这些文件被错误分类为非髋关节/骨盆射线照片或具有损坏的像素数据。最终登记处经过不到 8 小时的自动整理和注释,包括 168551 张前后骨盆射线照片、176890 张前后髋关节射线照片、174637 张侧髋关节射线照片和 117578 张斜髋关节射线照片。在确定射线照片外观方面,算法的准确率为 99.9%,精度为 99.6%,召回率为 99.5%,F1 得分为 99.6%。
我们开发了一系列高精度的深度学习算法,可快速整理和注释 THA 患者的射线照片。其他机构或登记处可以使用这种高效的管道来构建用于患者护理、纵向监测和大规模研究的射线摄影数据库。建立射线摄影登记处的逐步方法还可以进一步用作其他解剖区域的工作流程指南。
诊断水平 IV。请参阅作者说明,以获取完整的证据水平描述。