Mulford Kellen L, Grove Austin F, Kaji Elizabeth S, Rouzrokh Pouria, Roman Ryan D, Kremers Mete, Maradit Kremers Hilal, Taunton Michael J, Wyles Cody C
Orthopedic Surgery Artificial Intelligence Laboratory (OSAIL), Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.
Orthopedic Surgery Artificial Intelligence Laboratory (OSAIL), Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota; Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, Minnesota.
J Arthroplasty. 2025 May;40(5):1232-1238. doi: 10.1016/j.arth.2024.10.103. Epub 2024 Oct 29.
We present an automated image ingestion pipeline for a knee radiography registry, integrating a multilabel image-semantic classifier with conformal prediction-based uncertainty quantification and an object detection model for knee hardware.
Annotators retrospectively classified 26,000 knee images detailing presence, laterality, prostheses, and radiographic views. They further annotated surgical construct locations in 11,841 knee radiographs. An uncertainty-aware multilabel EfficientNet-based classifier was trained to identify the knee laterality, implants, and radiographic view. A classifier trained with embeddings from the EfficientNet model detected out-of-domain images. An object detection model was trained to identify 20 different knee implants. Model performance was assessed against a held-out internal and an external dataset using per-class F1 score, accuracy, sensitivity, and specificity. Conformal prediction was evaluated with marginal coverage and efficiency.
Classification Model with Conformal Prediction: F1 scores for each label output > 0.98. Coverage of each label output was > 0.99 and the average efficiency was 0.97. Domain Detection Model:The F1 score was 0.99, with precision and recall for knee radiographs of 0.99. Object Detection Model:Mean average precision across all classes was 0.945 and ranged from 0.695 to 1.000. Average precision and recall across all classes were 0.950 and 0.886.
We present a multilabel classifier with domain detection and an object detection model to characterize knee radiographs. Conformal prediction enhances transparency in cases when the model is uncertain.
我们为膝关节X线摄影登记系统提出了一种自动化图像摄取管道,该管道集成了多标签图像语义分类器、基于共形预测的不确定性量化以及用于膝关节硬件的目标检测模型。
注释者对26000张膝关节图像进行回顾性分类,详细说明其存在情况、左右侧、假体和X线摄影视图。他们还在11841张膝关节X线片中进一步标注了手术结构的位置。训练了一个基于不确定性感知的多标签高效神经网络分类器,以识别膝关节的左右侧、植入物和X线摄影视图。使用来自高效神经网络模型的嵌入训练的分类器检测域外图像。训练了一个目标检测模型,以识别20种不同的膝关节植入物。使用每类F1分数、准确率、灵敏度和特异性,针对保留的内部数据集和外部数据集评估模型性能。使用边际覆盖率和效率评估共形预测。
具有共形预测的分类模型:每个标签输出的F1分数>0.98。每个标签输出的覆盖率>0.99,平均效率为0.97。域检测模型:F1分数为0.99,膝关节X线片的精确率和召回率均为0.99。目标检测模型:所有类别的平均平均精度为0.945,范围为0.695至1.000。所有类别的平均精度和召回率分别为0.950和0.886。
我们提出了一种具有域检测功能的多标签分类器和一个目标检测模型,以表征膝关节X线片。当模型不确定时,共形预测提高了透明度。