Suppr超能文献

使用多任务深度学习模型表征髋关节形态

Characterizing hip joint morphology using a multitask deep learning model.

作者信息

Khosravi Bardia, Bukowiec Lainey G, Mickley John P, Oeding Jacob F, Rouzrokh Pouria, Erickson Bradley J, Sierra Rafael J, Taunton Michael J, Grigoriou Emmanouil, Wyles Cody C

机构信息

Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

出版信息

J Hip Preserv Surg. 2024 Dec 12;12(1):27-32. doi: 10.1093/jhps/hnae041. eCollection 2025 Jan.

Abstract

Deep learning is revolutionizing medical imaging analysis by enabling the classification of various pathoanatomical conditions at scale. Unfortunately, there have been a limited number of accurate and efficient machine learning (ML) algorithms that have been developed for the diagnostic workup of morphological hip pathologies, including developmental dysplasia of the hip and femoroacetabular impingement. The current study reports on the performance of a novel ML model with YOLOv5 and ConvNeXt-Tiny architecture in predicting the morphological features of these conditions, including cam deformity, ischial spine sign, dysplastic appearance, and other abnormalities. The model achieved 78.0% accuracy for detecting cam deformity, 87.2% for ischial spine sign, 76.6% for dysplasia, and 71.6% for all abnormalities combined. The model achieved an Area under the Receiver Operating Curve of 0.89 for ischial spine sign, 0.80 for cam deformity, 0.80 for dysplasia, and 0.81 for all abnormalities combined. Inter-rater agreement among surgeons, assessed using Gwet's AC1, was substantial for dysplasia (0.83) and all abnormalities (0.88), and moderate for ischial spine sign (0.75) and cam deformity (0.61).

摘要

深度学习正在彻底改变医学影像分析,能够大规模地对各种病理解剖状况进行分类。不幸的是,针对形态学髋关节病变(包括髋关节发育不良和股骨髋臼撞击症)的诊断检查,所开发的准确且高效的机器学习(ML)算法数量有限。当前的研究报告了一种采用YOLOv5和ConvNeXt-Tiny架构的新型ML模型在预测这些病症的形态学特征方面的表现,这些特征包括凸轮畸形、坐骨棘征、发育异常外观以及其他异常情况。该模型检测凸轮畸形的准确率为78.0%,坐骨棘征为87.2%,发育异常为76.6%,所有异常情况综合起来为71.6%。该模型对于坐骨棘征的受试者工作特征曲线下面积为0.89,凸轮畸形为0.80,发育异常为0.80,所有异常情况综合起来为0.81。使用Gwet's AC1评估的外科医生之间的评分者间一致性,对于发育异常(0.83)和所有异常情况(0.88)为高度一致,对于坐骨棘征(0.75)和凸轮畸形(0.61)为中度一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75cf/12051864/cdd6f16bc748/hnae041f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验