IEEE Trans Neural Netw Learn Syst. 2024 Feb;35(2):1457-1471. doi: 10.1109/TNNLS.2022.3190448. Epub 2024 Feb 5.
Decades of research have shown machine learning superiority in discovering highly nonlinear patterns embedded in electroencephalography (EEG) records compared with conventional statistical techniques. However, even the most advanced machine learning techniques require relatively large, labeled EEG repositories. EEG data collection and labeling are costly. Moreover, combining available datasets to achieve a large data volume is usually infeasible due to inconsistent experimental paradigms across trials. Self-supervised learning (SSL) solves these challenges because it enables learning from EEG records across trials with variable experimental paradigms, even when the trials explore different phenomena. It aggregates multiple EEG repositories to increase accuracy, reduce bias, and mitigate overfitting in machine learning training. In addition, SSL could be employed in situations where there is limited labeled training data, and manual labeling is costly. This article: 1) provides a brief introduction to SSL; 2) describes some SSL techniques employed in recent studies, including EEG; 3) proposes current and potential SSL techniques for future investigations in EEG studies; 4) discusses the cons and pros of different SSL techniques; and 5) proposes holistic implementation tips and potential future directions for EEG SSL practices.
几十年来的研究表明,与传统的统计技术相比,机器学习在发现脑电图 (EEG) 记录中嵌入的高度非线性模式方面具有优势。然而,即使是最先进的机器学习技术也需要相对较大的、标记的 EEG 存储库。EEG 数据的收集和标记成本高昂。此外,由于试验之间的实验范式不一致,通常不可能将可用的数据集组合起来以实现大数据量。自监督学习 (SSL) 解决了这些挑战,因为它能够从具有不同实验范式的 EEG 记录中学习,即使这些试验探索了不同的现象。它可以聚合多个 EEG 存储库,以提高机器学习训练的准确性、降低偏差和减轻过拟合。此外,在标记训练数据有限且手动标记成本高昂的情况下,SSL 可以被采用。本文:1) 对 SSL 进行简要介绍;2) 描述了最近研究中使用的一些 SSL 技术,包括 EEG;3) 为未来 EEG 研究中的 SSL 技术提出了当前和潜在的技术;4) 讨论了不同 SSL 技术的优缺点;5) 提出了 EEG SSL 实践的整体实施技巧和潜在的未来方向。