Danish Research Institute of Translational Neuroscience-Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark.
Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
Curr Biol. 2019 Oct 7;29(19):3277-3288.e5. doi: 10.1016/j.cub.2019.08.048. Epub 2019 Sep 26.
The detection of visual motion is a fundamental function of the visual system. How motion speed and direction are computed together at the cellular level, however, remains largely unknown. Here, we suggest a circuit mechanism by which excitatory inputs to direction-selective ganglion cells in the mouse retina become sensitive to the motion speed and direction of image motion. Electrophysiological, imaging, and connectomic analyses provide evidence that the dendrites of ON direction-selective cells receive spatially offset and asymmetrically filtered glutamatergic inputs along motion-preference axis from asymmetrically wired bipolar and amacrine cell types with distinct release dynamics. A computational model shows that, with this spatiotemporal structure, the input amplitude becomes sensitive to speed and direction by a preferred direction enhancement mechanism. Our results highlight the role of an excitatory mechanism in retinal motion computation by which feature selectivity emerges from non-selective inputs.
视觉运动的检测是视觉系统的基本功能。然而,细胞水平上如何共同计算运动速度和方向在很大程度上仍然未知。在这里,我们提出了一种电路机制,通过该机制,对小鼠视网膜中方向选择性神经节细胞的兴奋性输入对图像运动的运动速度和方向变得敏感。电生理学、成像和连接组学分析提供的证据表明,ON 方向选择性细胞的树突从具有不同释放动力学的以非对称方式布线的双极细胞和无长突细胞类型沿运动偏好轴接收空间偏移和非对称滤波的谷氨酸能输入。计算模型表明,通过这种时空结构,输入幅度通过首选方向增强机制对速度和方向变得敏感。我们的结果强调了兴奋机制在视网膜运动计算中的作用,通过该机制,从非选择性输入中出现特征选择性。