Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany.
Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany.
J Neurosci. 2023 Apr 5;43(14):2497-2514. doi: 10.1523/JNEUROSCI.2297-22.2023. Epub 2023 Feb 27.
An important step in neural information processing is the transformation of membrane voltage into calcium signals leading to transmitter release. However, the effect of voltage to calcium transformation on neural responses to different sensory stimuli is not well understood. Here, we use in vivo two-photon imaging of genetically encoded voltage and calcium indicators, ArcLight and GCaMP6f, respectively, to measure responses in direction-selective T4 neurons of female Comparison between ArcLight and GCaMP6f signals reveals calcium signals to have a significantly higher direction selectivity compared with voltage signals. Using these recordings, we build a model which transforms T4 voltage responses into calcium responses. Using a cascade of thresholding, temporal filtering and a stationary nonlinearity, the model reproduces experimentally measured calcium responses across different visual stimuli. These findings provide a mechanistic underpinning of the voltage to calcium transformation and show how this processing step, in addition to synaptic mechanisms on the dendrites of T4 cells, enhances direction selectivity in the output signal of T4 neurons. Measuring the directional tuning of postsynaptic vertical system (VS)-cells with inputs from other cells blocked, we found that, indeed, it matches the one of the calcium signal in presynaptic T4 cells. The transformation of voltage to calcium influx is an important step in the signaling cascade within a nerve cell. While this process has been intensely studied in the context of transmitter release mechanism, its consequences for information transmission and neural computation are unclear. Here, we measured both membrane voltage and cytosolic calcium levels in direction-selective cells of in response to a large set of visual stimuli. We found direction selectivity in the calcium signal to be significantly enhanced compared with membrane voltage through a nonlinear transformation of voltage to calcium. Our findings highlight the importance of an additional step in the signaling cascade for information processing within single nerve cells.
神经信息处理的一个重要步骤是将膜电压转换为导致递质释放的钙信号。然而,电压到钙的转换对神经对不同感觉刺激的反应的影响还不是很清楚。在这里,我们使用体内双光子成像分别记录遗传编码的电压和钙指示剂 ArcLight 和 GCaMP6f,以测量雌性 T4 神经元的方向选择性反应。ArcLight 和 GCaMP6f 信号的比较表明,钙信号的方向选择性明显高于电压信号。使用这些记录,我们构建了一个将 T4 电压反应转换为钙反应的模型。通过一系列的阈值、时间滤波和固定的非线性,该模型再现了不同视觉刺激下实验测量的钙反应。这些发现为电压到钙的转换提供了一个机制基础,并表明了这种处理步骤,除了 T4 细胞树突上的突触机制,如何增强 T4 神经元输出信号的方向选择性。测量具有其他细胞输入阻断的突触后垂直系统(VS)-细胞的方向调谐,我们发现,实际上,它与 T4 细胞中钙信号的方向调谐相匹配。电压向钙内流的转换是神经细胞信号级联中的一个重要步骤。虽然这个过程在递质释放机制的背景下已经被深入研究,但它对信息传递和神经计算的影响还不清楚。在这里,我们测量了方向选择性细胞对一大组视觉刺激的反应中的膜电压和胞质钙水平。我们发现,通过电压到钙的非线性转换,钙信号的方向选择性明显高于膜电压。我们的发现强调了在单个神经细胞的信号级联中,额外的步骤对于信息处理的重要性。