Suppr超能文献

心血管风险模型的预测性能和公平性异质性。

Prediction performance and fairness heterogeneity in cardiovascular risk models.

机构信息

Center for Computational Health, IBM Research, 314 Main St., Cambridge, MA, 02142, USA.

Cardiovascular Disease Initiative, Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.

出版信息

Sci Rep. 2022 Jul 22;12(1):12542. doi: 10.1038/s41598-022-16615-3.

Abstract

Prediction models are commonly used to estimate risk for cardiovascular diseases, to inform diagnosis and management. However, performance may vary substantially across relevant subgroups of the population. Here we investigated heterogeneity of accuracy and fairness metrics across a variety of subgroups for risk prediction of two common diseases: atrial fibrillation (AF) and atherosclerotic cardiovascular disease (ASCVD). We calculated the Cohorts for Heart and Aging in Genomic Epidemiology Atrial Fibrillation (CHARGE-AF) score for AF and the Pooled Cohort Equations (PCE) score for ASCVD in three large datasets: Explorys Life Sciences Dataset (Explorys, n = 21,809,334), Mass General Brigham (MGB, n = 520,868), and the UK Biobank (UKBB, n = 502,521). Our results demonstrate important performance heterogeneity across subpopulations defined by age, sex, and presence of preexisting disease, with fairly consistent patterns across both scores. For example, using CHARGE-AF, discrimination declined with increasing age, with a concordance index of 0.72 [95% CI 0.72-0.73] for the youngest (45-54 years) subgroup to 0.57 [0.56-0.58] for the oldest (85-90 years) subgroup in Explorys. Even though sex is not included in CHARGE-AF, the statistical parity difference (i.e., likelihood of being classified as high risk) was considerable between males and females within the 65-74 years subgroup with a value of - 0.33 [95% CI - 0.33 to - 0.33]. We also observed weak discrimination (i.e., < 0.7) and suboptimal calibration (i.e., calibration slope outside of 0.7-1.3) in large subsets of the population; for example, all individuals aged 75 years or older in Explorys (17.4%). Our findings highlight the need to characterize and quantify the behavior of clinical risk models within specific subpopulations so they can be used appropriately to facilitate more accurate, consistent, and equitable assessment of disease risk.

摘要

预测模型常用于估计心血管疾病的风险,为诊断和管理提供信息。然而,其性能在人群的相关亚组中可能有很大差异。在这里,我们研究了各种亚组中两种常见疾病(心房颤动(AF)和动脉粥样硬化性心血管疾病(ASCVD))风险预测的准确性和公平性指标的异质性。我们在三个大型数据集(Explorys 生命科学数据集(Explorys)、n=21,809,334、马萨诸塞州总医院-布列根和妇女医院(MGB)、n=520,868 和英国生物银行(UKBB)、n=502,521)中计算了用于 AF 的 Cohorts for Heart and Aging in Genomic Epidemiology Atrial Fibrillation(CHARGE-AF)评分和用于 ASCVD 的 Pooled Cohort Equations(PCE)评分。我们的研究结果表明,在年龄、性别和是否存在既往疾病定义的亚组中,预测模型的性能存在重要的异质性,这两个评分都呈现出相当一致的模式。例如,在使用 CHARGE-AF 时,随着年龄的增加,预测模型的区分度下降,在 Explorys 中年龄最小(45-54 岁)的亚组的一致性指数为 0.72 [95% CI 0.72-0.73],而年龄最大(85-90 岁)的亚组的一致性指数为 0.57 [0.56-0.58]。尽管 CHARGE-AF 中不包括性别,但在 65-74 岁亚组中,男性和女性之间的统计学均等差异(即被归类为高风险的可能性)相当大,为 -0.33 [95% CI -0.33 至 -0.33]。我们还观察到在人群的大部分亚组中,区分度较低(即 <0.7)和校准效果不佳(即校准斜率不在 0.7-1.3 范围内);例如,在 Explorys 中所有 75 岁及以上的人(17.4%)。我们的研究结果强调需要对特定亚组中的临床风险模型的行为进行特征描述和量化,以便能够适当地使用它们来促进更准确、一致和公平的疾病风险评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验