Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, 200 Union St SE, Minneapolis, MN, 55455, USA.
Department of Mechanical Engineering, University of Minnesota Twin Cities, 117 Pleasant St SE, Minneapolis, MN, 55455, USA.
Adv Healthc Mater. 2022 Sep;11(18):e2200626. doi: 10.1002/adhm.202200626. Epub 2022 Aug 19.
Electrophysiology and optical imaging provide complementary neural sensing capabilities - electrophysiological recordings have high temporal resolution, while optical imaging allows recording of genetically-defined populations at high spatial resolution. Combining these two modalities for simultaneous large-scale, multimodal sensing of neural activity across multiple brain regions can be very powerful. Here, transparent, inkjet-printed electrode arrays with outstanding optical and electrical properties are seamlessly integrated with morphologically conformant transparent polymer skulls. Implanted on transgenic mice expressing the Calcium (Ca ) indicator GCaMP6f in excitatory neurons, these "eSee-Shells" provide a robust opto-electrophysiological interface for over 100 days. eSee-Shells enable simultaneous mesoscale Ca imaging and electrocorticography (ECoG) acquisition from multiple brain regions covering 45 mm of cortex under anesthesia and in awake animals. The clarity and transparency of eSee-Shells allow recording single-cell Ca signals directly below the electrodes and interconnects. Simultaneous multimodal measurement of cortical dynamics reveals changes in both ECoG and Ca signals that depend on the behavioral state.
电生理学和光学成像是互补的神经传感手段——电生理记录具有高时间分辨率,而光学成像是记录基因定义的群体在高空间分辨率下的理想选择。将这两种模式结合起来,同时对多个脑区的神经活动进行大规模、多模态的感应,是非常强大的。在这里,具有出色的光学和电学性能的透明喷墨打印电极阵列与形态一致的透明聚合物颅骨无缝集成。植入在兴奋性神经元中表达钙(Ca )指示剂 GCaMP6f 的转基因小鼠后,这些“eSee-Shells”为超过 100 天的时间提供了一个强大的光电生理接口。eSee-Shells 可在麻醉和清醒动物状态下,从覆盖 45 毫米皮层的多个脑区同时进行中尺度 Ca 成像和皮层电图(ECoG)采集。eSee-Shells 的清晰度和透明度允许在电极和互连下方直接记录单细胞 Ca 信号。对皮质动力学的同时多模态测量揭示了依赖于行为状态的 ECoG 和 Ca 信号的变化。