Department of Medicine II, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany; Bavarian Centre for Cancer Research (Bayerisches Zentrum für Krebsforschung), Munich, Germany.
Department of General and Visceral Surgery, Asklepios Klinikum Hamburg, Hamburg, Germany.
Gastroenterology. 2022 Nov;163(5):1407-1422. doi: 10.1053/j.gastro.2022.07.047. Epub 2022 Jul 21.
BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly lethal malignancy requiring efficient detection when the primary tumor is still resectable. We previously developed the MxPancreasScore comprising 9 analytes and serum carbohydrate antigen 19-9 (CA19-9), achieving an accuracy of 90.6%. The necessity for 5 different analytical platforms and multiple analytical runs, however, hindered clinical applicability. We therefore aimed to develop a simpler single-analytical run, single-platform diagnostic signature.
We evaluated 941 patients (PDAC, 356; chronic pancreatitis [CP], 304; nonpancreatic disease, 281) in 3 multicenter independent tests, and identification (ID) and validation cohort 1 (VD1) and 2 (VD2) were evaluated. Targeted quantitative plasma metabolite analysis was performed on a liquid chromatography-tandem mass spectrometry platform. A machine learning-aided algorithm identified an improved (i-Metabolic) and minimalistic metabolic (m-Metabolic) signatures, and compared them for performance.
The i-Metabolic Signature, (12 analytes plus CA19-9) distinguished PDAC from CP with area under the curve (95% confidence interval) of 97.2% (97.1%-97.3%), 93.5% (93.4%-93.7%), and 92.2% (92.1%-92.3%) in the ID, VD1, and VD2 cohorts, respectively. In the VD2 cohort, the m-Metabolic signature (4 analytes plus CA19-9) discriminated PDAC from CP with a sensitivity of 77.3% and specificity of 89.6%, with an overall accuracy of 82.4%. For the subset of 45 patients with PDAC with resectable stages IA-IIB tumors, the sensitivity, specificity, and accuracy were 73.2%, 89.6%, and 82.7%, respectively; for those with detectable CA19-9 >2 U/mL, 81.6%, 88.7%, and 84.5%, respectively; and for those with CA19-9 <37 U/mL, 39.7%, 94.1%, and 76.3%, respectively.
The single-platform, single-run, m-Metabolic signature of just 4 metabolites used in combination with serum CA19-9 levels is an innovative accurate diagnostic tool for PDAC at the time of clinical presentation, warranting further large-scale evaluation.
胰腺导管腺癌(PDAC)是一种高度致命的恶性肿瘤,当原发肿瘤仍可切除时,需要进行有效的检测。我们之前开发了包含 9 种分析物和血清碳水化合物抗原 19-9(CA19-9)的 MxPancreasScore,其准确率达到 90.6%。然而,需要 5 种不同的分析平台和多次分析运行,这阻碍了其临床应用。因此,我们旨在开发一种更简单的单分析运行、单平台诊断特征。
我们在 3 项多中心独立试验中评估了 941 名患者(PDAC,356 例;慢性胰腺炎[CP],304 例;非胰腺疾病,281 例),并评估了鉴定(ID)和验证队列 1(VD1)和 2(VD2)。在液相色谱-串联质谱平台上进行靶向定量血浆代谢物分析。机器学习辅助算法确定了改进的(i-Metabolic)和简化的(m-Metabolic)代谢特征,并对其性能进行了比较。
i-Metabolic 特征(12 种分析物加 CA19-9)在 ID、VD1 和 VD2 队列中分别以 97.2%(97.1%-97.3%)、93.5%(93.4%-93.7%)和 92.2%(92.1%-92.3%)的曲线下面积(95%置信区间)区分 PDAC 与 CP。在 VD2 队列中,m-Metabolic 特征(4 种分析物加 CA19-9)以 77.3%的敏感性和 89.6%的特异性区分 PDAC 与 CP,总体准确率为 82.4%。对于 45 例可切除 IA-IIB 期肿瘤的 PDAC 患者亚组,敏感性、特异性和准确性分别为 73.2%、89.6%和 82.7%;对于可检测到 CA19-9>2 U/mL 的患者,敏感性、特异性和准确性分别为 81.6%、88.7%和 84.5%;对于 CA19-9<37 U/mL 的患者,敏感性、特异性和准确性分别为 39.7%、94.1%和 76.3%。
仅使用 4 种代谢物的单平台、单运行、m-Metabolic 特征与血清 CA19-9 水平相结合,是一种用于临床诊断 PDAC 的创新、准确的诊断工具,值得进一步进行大规模评估。