Suppr超能文献

胰腺导管腺癌中代谢特征的诊断和预后性能:定量新一代质谱的临床应用

Diagnostic and Prognostic Performance of Metabolic Signatures in Pancreatic Ductal Adenocarcinoma: The Clinical Application of Quantitative NextGen Mass Spectrometry.

作者信息

D'Amora Paulo, Silva Ismael D C G, Evans Steven S, Nagourney Adam J, Kirby Katharine A, Herrmann Brett, Cavalheiro Daniela, Francisco Federico R, Bernard Paula J, Nagourney Robert A

机构信息

Metabolomycs, Inc., 750 E. 29th Street, Long Beach, CA 90806, USA.

Nagourney Cancer Institute, 750 E. 29th Street, Long Beach, CA 90806, USA.

出版信息

Metabolites. 2024 Feb 29;14(3):148. doi: 10.3390/metabo14030148.

Abstract

With 64,050 new diagnoses and 50,550 deaths in the US in 2023, pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of all human malignancies. Early detection and improved prognostication remain critical unmet needs. We applied next-generation metabolomics, using quantitative tandem mass spectrometry on plasma, to develop biochemical signatures that identify PDAC. We first compared plasma from 10 PDAC patients to 169 samples from healthy controls. Using metabolomic algorithms and machine learning, we identified ratios that incorporate amino acids, biogenic amines, lysophosphatidylcholines, phosphatidylcholines and acylcarnitines that distinguished PDAC from normal controls. A confirmatory analysis then applied the algorithms to 30 PDACs compared with 60 age- and sex-matched controls. Metabolic signatures were then analyzed to compare survival, measured in months, from date of diagnosis to date of death that identified metabolite ratios that stratified PDACs into distinct survival groups. The results suggest that metabolic signatures could provide PDAC diagnoses earlier than tumor markers or radiographic measures and offer insights into disease severity that could allow more judicious use of therapy by stratifying patients into metabolic-risk subgroups.

摘要

2023年,美国有64050例新诊断的胰腺导管腺癌(PDAC)病例,50550人死亡,胰腺导管腺癌是所有人类恶性肿瘤中致死性最高的癌症之一。早期检测和改善预后仍然是尚未满足的关键需求。我们应用下一代代谢组学技术,通过对血浆进行定量串联质谱分析,来开发识别胰腺导管腺癌的生化特征。我们首先将10例胰腺导管腺癌患者的血浆与169份健康对照样本进行比较。利用代谢组学算法和机器学习,我们确定了包含氨基酸、生物胺、溶血磷脂酰胆碱、磷脂酰胆碱和酰基肉碱的比值,这些比值可将胰腺导管腺癌与正常对照区分开来。随后的验证性分析将这些算法应用于30例胰腺导管腺癌患者,并与60例年龄和性别匹配的对照进行比较。然后分析代谢特征,以比较从诊断日期到死亡日期以月为单位的生存期,从而确定能将胰腺导管腺癌患者分为不同生存组的代谢物比值。结果表明,代谢特征能够比肿瘤标志物或影像学检查更早地诊断胰腺导管腺癌,并能洞察疾病严重程度,从而通过将患者分为代谢风险亚组,更明智地使用治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf83/10972340/0f5a8b656c4d/metabolites-14-00148-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验