Suppr超能文献

基于配体的虚拟筛选方法的最新技术评估。

Critical Assessment of State-of-the-Art Ligand-Based Virtual Screening Methods.

机构信息

Medicinal Sciences, Pfizer Inc, 1 Portland St, Cambridge, Massachusetts 02139, United States.

Medicinal Sciences, Pfizer Inc, 10777 Science Center Dr, San Diego, California 92121, United States.

出版信息

Mol Inform. 2022 Nov;41(11):e2200103. doi: 10.1002/minf.202200103. Epub 2022 Aug 9.

Abstract

The availability of large chemical libraries containing hundreds of millions to billions of diverse drug-like molecules combined with an almost unlimited amount of compute power to achieve scientific calculations has led investors and researchers to have a renewed interest in virtual screening (VS) methods to identify biologically active compounds. The number of in silico screening tools and software which employ the knowledge of the protein target or known bioactive ligands is increasing at a rapid pace, creating a crowded computational landscape where it has become difficult to assess the real advantages and disadvantages in terms of accuracy and efficiency of each individual VS technology. In the current work, we evaluate the performance of several state-of-the-art commercial software for 3D ligand-based VS against well-known 2D methods using an internally curated benchmarking data set. Our results show that the best individual methods can differ significantly based on the data set, and that combining them using data fusion techniques results in improved enrichment in the top 1 % of retrieved hits. Although 2D methods alone can already provide a significant enrichment in the number of predicted active compounds, the combination of data-fused 2D results with just one out of the best 3D methods (ROCS, FLAP or Blaze) further improves early enrichment and the likelihood of identifying additional chemotypes.

摘要

大型化学库中含有数亿至数十亿种不同药物样分子,再加上几乎无限的计算能力来实现科学计算,这使得投资者和研究人员对虚拟筛选 (VS) 方法重新产生了兴趣,以识别具有生物活性的化合物。使用蛋白质靶标或已知生物活性配体知识的计算筛选工具和软件的数量正在迅速增加,这使得计算领域变得拥挤,难以评估每种 VS 技术在准确性和效率方面的真正优势和劣势。在当前的工作中,我们使用内部编纂的基准数据集评估了几种最先进的商业 3D 基于配体的 VS 软件针对知名 2D 方法的性能。我们的结果表明,最佳的单个方法可能会根据数据集有很大的差异,并且使用数据融合技术对它们进行组合可以提高在检索命中的前 1%中富集的效果。虽然 2D 方法本身就可以在预测活性化合物的数量上提供显著的富集,但将数据融合的 2D 结果与最好的 3D 方法之一(ROCS、FLAP 或 Blaze)相结合,还可以进一步提高早期的富集度,并增加识别其他化学型的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验