Suppr超能文献

将预测模型运用于新目标人群。

Transporting a Prediction Model for Use in a New Target Population.

出版信息

Am J Epidemiol. 2023 Feb 1;192(2):296-304. doi: 10.1093/aje/kwac128.

Abstract

We considered methods for transporting a prediction model for use in a new target population, both when outcome and covariate data for model development are available from a source population that has a different covariate distribution compared with the target population and when covariate data (but not outcome data) are available from the target population. We discuss how to tailor the prediction model to account for differences in the data distribution between the source population and the target population. We also discuss how to assess the model's performance (e.g., by estimating the mean squared prediction error) in the target population. We provide identifiability results for measures of model performance in the target population for a potentially misspecified prediction model under a sampling design where the source and the target population samples are obtained separately. We introduce the concept of prediction error modifiers that can be used to reason about tailoring measures of model performance to the target population. We illustrate the methods in simulated data and apply them to transport a prediction model for lung cancer diagnosis from the National Lung Screening Trial to the nationally representative target population of trial-eligible individuals in the National Health and Nutrition Examination Survey.

摘要

我们考虑了在新目标人群中使用预测模型的方法,包括当用于模型开发的结局和协变量数据可从具有与目标人群不同协变量分布的源人群获得,以及当仅可从目标人群获得协变量(但不是结局)数据时的情况。我们讨论了如何根据源人群和目标人群之间的数据分布差异来调整预测模型。我们还讨论了如何在目标人群中评估模型的性能(例如,通过估计均方预测误差)。我们提供了在目标人群中对模型性能进行度量的可识别性结果,这是在源人群和目标人群样本分别获得的抽样设计下对潜在指定不当的预测模型的结果。我们引入了预测误差修正因子的概念,可用于根据目标人群来调整模型性能度量。我们在模拟数据中演示了这些方法,并将其应用于从全国肺癌筛查试验向全国健康和营养检查调查中符合试验条件的目标人群中转移用于诊断肺癌的预测模型。

相似文献

1
Transporting a Prediction Model for Use in a New Target Population.
Am J Epidemiol. 2023 Feb 1;192(2):296-304. doi: 10.1093/aje/kwac128.
2
Estimating the area under the ROC curve when transporting a prediction model to a target population.
Biometrics. 2023 Sep;79(3):2382-2393. doi: 10.1111/biom.13796. Epub 2022 Nov 25.
3
Extending prediction models for use in a new target population with failure time outcomes.
Biostatistics. 2023 Jul 14;24(3):728-742. doi: 10.1093/biostatistics/kxac011.
5
Systematically missing data in causally interpretable meta-analysis.
Biostatistics. 2024 Apr 15;25(2):289-305. doi: 10.1093/biostatistics/kxad006.
6
Regression-based estimation of heterogeneous treatment effects when extending inferences from a randomized trial to a target population.
Eur J Epidemiol. 2023 Feb;38(2):123-133. doi: 10.1007/s10654-022-00901-5. Epub 2023 Jan 10.
7
Generalizability and Transportability of the National Lung Screening Trial Data: Extending Trial Results to Different Populations.
Cancer Epidemiol Biomarkers Prev. 2021 Dec;30(12):2227-2234. doi: 10.1158/1055-9965.EPI-21-0585. Epub 2021 Sep 20.
8
Evaluating disease prediction models using a cohort whose covariate distribution differs from that of the target population.
Stat Methods Med Res. 2019 Jan;28(1):309-320. doi: 10.1177/0962280217723945. Epub 2017 Aug 16.
10
Transporting experimental results with entropy balancing.
Stat Med. 2021 Aug 30;40(19):4310-4326. doi: 10.1002/sim.9031. Epub 2021 May 20.

引用本文的文献

1
Bridging Data Gaps in Healthcare: A Scoping Review of Transfer Learning in Structured Data Analysis.
Health Data Sci. 2025 Sep 3;5:0321. doi: 10.34133/hds.0321. eCollection 2025.
2
Correcting for case-mix shift when developing clinical prediction models.
BMC Med Res Methodol. 2025 Aug 1;25(1):186. doi: 10.1186/s12874-025-02621-2.
3
Robust Estimation of Loss-Based Measures of Model Performance under Covariate Shift.
Can J Stat. 2024 Dec;52(4). doi: 10.1002/cjs.11815. Epub 2024 Jul 12.
4
Sensitivity analysis for studies transporting prediction models.
Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae129.
5
Evaluating Binary Outcome Classifiers Estimated from Survey Data.
Epidemiology. 2024 Nov 1;35(6):805-812. doi: 10.1097/EDE.0000000000001776. Epub 2024 Aug 14.
7
Learning about treatment effects in a new target population under transportability assumptions for relative effect measures.
Eur J Epidemiol. 2024 Sep;39(9):957-965. doi: 10.1007/s10654-023-01067-4. Epub 2024 May 10.
8
Semisupervised transfer learning for evaluation of model classification performance.
Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujae002.
9
Invited Commentary: Combining Information to Answer Epidemiologic Questions About a Target Population.
Am J Epidemiol. 2024 May 7;193(5):741-750. doi: 10.1093/aje/kwad014.
10
Transfer learning of individualized treatment rules from experimental to real-world data.
J Comput Graph Stat. 2023;32(3):1036-1045. doi: 10.1080/10618600.2022.2141752. Epub 2022 Nov 30.

本文引用的文献

1
Causally Interpretable Meta-analysis: Application in Adolescent HIV Prevention.
Prev Sci. 2022 Apr;23(3):403-414. doi: 10.1007/s11121-021-01270-3. Epub 2021 Jul 9.
2
Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement.
JAMA. 2021 Mar 9;325(10):962-970. doi: 10.1001/jama.2021.1117.
3
Study Designs for Extending Causal Inferences From a Randomized Trial to a Target Population.
Am J Epidemiol. 2021 Aug 1;190(8):1632-1642. doi: 10.1093/aje/kwaa270.
4
Benchmarking Observational Methods by Comparing Randomized Trials and Their Emulations.
Epidemiology. 2020 Sep;31(5):614-619. doi: 10.1097/EDE.0000000000001231.
5
Extending inferences from a randomized trial to a new target population.
Stat Med. 2020 Jun 30;39(14):1999-2014. doi: 10.1002/sim.8426. Epub 2020 Apr 6.
6
Regularized Bayesian transfer learning for population-level etiological distributions.
Biostatistics. 2021 Oct 13;22(4):836-857. doi: 10.1093/biostatistics/kxaa001.
7
Extending inferences from a randomized trial to a target population.
Eur J Epidemiol. 2019 Aug;34(8):719-722. doi: 10.1007/s10654-019-00533-2. Epub 2019 Jun 19.
9
Generalizing causal inferences from individuals in randomized trials to all trial-eligible individuals.
Biometrics. 2019 Jun;75(2):685-694. doi: 10.1111/biom.13009. Epub 2019 Jun 21.
10
On Inverse Probability Weighting for Nonmonotone Missing at Random Data.
J Am Stat Assoc. 2018;113(521):369-379. doi: 10.1080/01621459.2016.1256814. Epub 2017 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验