Morrison Samantha, Gatsonis Constantine, Dahabreh Issa J, Li Bing, Steingrimsson Jon A
Department of Biostatistics, Brown University, Providence, United States.
CAUSALab, Harvard T.H. Chan School of Public Health, Boston, United States, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, United States, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States.
Can J Stat. 2024 Dec;52(4). doi: 10.1002/cjs.11815. Epub 2024 Jul 12.
We present methods for estimating loss-based measures of the performance of a prediction model in a target population that differs from the source population in which the model was developed, in settings where outcome and covariate data are available from the source population but only covariate data are available on a simple random sample from the target population. Prior work adjusting for differences between the two populations has used various weighting estimators with inverse odds or density ratio weights. Here, we develop more robust estimators for the target population risk (expected loss) that can be used with data-adaptive (e.g., machine learning-based) estimation of nuisance parameters. We examine the large-sample properties of the estimators and evaluate finite sample performance in simulations. Last, we apply the methods to data from lung cancer screening using nationally representative data from the National Health and Nutrition Examination Survey (NHANES) and extend our methods to account for the complex survey design of the NHANES.
我们提出了一些方法,用于在目标人群中估计预测模型性能的基于损失的度量。在这种情况下,目标人群与模型开发所在的源人群不同,且源人群可获得结局和协变量数据,而目标人群仅通过简单随机样本可获得协变量数据。先前针对这两个人群差异进行调整的工作使用了各种具有逆概率或密度比权重的加权估计器。在此,我们开发了用于目标人群风险(预期损失)的更稳健估计器,这些估计器可与数据自适应(例如基于机器学习)的干扰参数估计一起使用。我们研究了估计器的大样本性质,并在模拟中评估了有限样本性能。最后,我们将这些方法应用于来自美国国家健康与营养检查调查(NHANES)的具有全国代表性的肺癌筛查数据,并扩展我们的方法以考虑NHANES的复杂调查设计。