Suppr超能文献

转录组学方法揭示了千屈菜科(桃金娘目)对干旱胁迫的响应机制。

Transcriptome Approach Reveals the Response Mechanism of (Lythraceae, Myrtales) to Drought Stress.

作者信息

Lin Lin, Wang Jie, Wang Qun, Ji Mengcheng, Hong Sidan, Shang Linxue, Zhang Guozhe, Zhao Yu, Ma Qingqing, Gu Cuihua

机构信息

College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China.

Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China.

出版信息

Front Plant Sci. 2022 Jul 8;13:877913. doi: 10.3389/fpls.2022.877913. eCollection 2022.

Abstract

Drought is a major environmental condition that inhibits the development and cultivation of . The molecular processes of drought resistance in remain unknown, which has limited its application. In our study, transcriptome analyzes were compared across three treatment groups (CK, T1, and T2), to investigate the molecular mechanism of drought resistance. Plant leaves wilted and drooped as the duration of drought stress increased. The relative water content of the leaves declined dramatically, and relative electrolyte leakage rose progressively. Using an RNA-Seq approach, a total of 62,015 unigenes with an average length of 1730 bp were found, with 86.61% of them annotated to seven databases, and 14,272 differentially expressed genes (DEGs) were identified in drought stress. GO and KEGG enrichment analyzes of the DEGs revealed significantly enriched KEGG pathways, including photosynthesis, photosynthetic antenna proteins, plant hormone signal transduction, glutathione metabolism, and ascorbate and aldarate metabolism. Abscisic acid signal transduction was the most prevalent in the plant hormone signal transduction pathway, and other plant hormone signal transductions were also involved in the drought stress response. The transcription factors (including MYB, NAC, WRKY, and bHLH) and related differential genes on significantly enriched pathways all played important roles in the drought process, such as photosynthesis-related genes and antioxidant enzyme genes. In conclusion, this study will provide several genetic resources for further investigation of the molecular processes that will be beneficial to cultivation and breeding.

摘要

干旱是一种抑制[植物名称]发育和栽培的主要环境条件。[植物名称]抗旱的分子过程尚不清楚,这限制了其应用。在我们的研究中,对三个处理组(CK、T1和T2)进行了转录组分析,以研究抗旱的分子机制。随着干旱胁迫持续时间的增加,植物叶片枯萎下垂。叶片的相对含水量急剧下降,相对电解质渗漏逐渐增加。使用RNA-Seq方法,共发现62015个单基因,平均长度为1730 bp,其中86.61%注释到七个数据库,在干旱胁迫中鉴定出14272个差异表达基因(DEG)。对DEG的GO和KEGG富集分析揭示了显著富集的KEGG途径,包括光合作用、光合天线蛋白、植物激素信号转导、谷胱甘肽代谢以及抗坏血酸和醛糖代谢。脱落酸信号转导在植物激素信号转导途径中最为普遍,其他植物激素信号转导也参与干旱胁迫响应。转录因子(包括MYB、NAC、WRKY和bHLH)以及显著富集途径上的相关差异基因在干旱过程中都发挥了重要作用,如光合作用相关基因和抗氧化酶基因。总之,本研究将为进一步研究有利于[植物名称]栽培和育种的分子过程提供多种遗传资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0677/9305661/84928573ba9c/fpls-13-877913-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验