Ciechanowicz Paulina, Gorantla Sandeep, Wełna Monika, Pieniążek Agnieszka, Serafińczuk Jarosław, Kowalski Bogdan, Kudrawiec Robert, Hommel Detlef
Łukasiewicz Research Network-PORT Polish Center for Technology Development, Wrocław 54-066, Poland.
Faculty of Physics and Astronomy, University of Wrocław, Wrocław 50-137, Poland.
ACS Omega. 2022 Jul 5;7(28):24777-24784. doi: 10.1021/acsomega.2c02777. eCollection 2022 Jul 19.
Due to the antisurfactant properties of arsenic atoms, the self-induced dodecagonal GaN microrods can be grown by molecular beam epitaxy (MBE) in Ga-rich conditions. Since temperature is a key parameter in MBE growth, the role of temperature in the growth of GaN microrods is investigated. The optimal growth temperature window for the formation of GaN microrods is observed to be between 760 and 800 °C. Lowering the temperature to 720 °C did not change the growth mechanism, but the population of irregular and amorphous microrods increased. On the other hand, increasing the growth temperature up to 880 °C interrupts the growth of GaN microrods, due to the re-evaporation of the gallium from the surface. The incorporation of As in GaN microrods is negligible, which is confirmed by X-ray diffraction and transmission electron microscopy. Moreover, the photoluminescence and cathodoluminescence characteristics typical for GaN are observed for individual GaN microrods, which additionally confirms that arsenic is not incorporated inside microrods. When the growth temperature is increased, the emission related to the band gap decreases in favor of the defect-related emission. This is typical for bulk GaN and attributed to an increase in the point defect concentration for GaN microrods grown at lower temperatures.
由于砷原子具有抗表面活性剂的特性,通过分子束外延(MBE)在富镓条件下可以生长出自诱导的十二边形氮化镓微棒。由于温度是MBE生长中的关键参数,因此研究了温度在氮化镓微棒生长中的作用。观察到形成氮化镓微棒的最佳生长温度窗口在760至800℃之间。将温度降低到720℃并没有改变生长机制,但不规则和非晶态微棒数量增加。另一方面,将生长温度提高到880℃会由于镓从表面的再蒸发而中断氮化镓微棒的生长。通过X射线衍射和透射电子显微镜证实,砷在氮化镓微棒中的掺入可以忽略不计。此外,对于单个氮化镓微棒观察到了典型的氮化镓光致发光和阴极发光特性,这进一步证实了砷没有掺入微棒内部。当生长温度升高时,与带隙相关的发射减少,有利于与缺陷相关的发射。这是块状氮化镓的典型特征,归因于在较低温度下生长的氮化镓微棒中点缺陷浓度的增加。