Suppr超能文献

癌症组学数据分析中的可重复性:度量和实证研究。

Replicability in cancer omics data analysis: measures and empirical explorations.

机构信息

Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.

Department of Statistics, School of Economics, Xiamen University, Xiamen, Fujian, China.

出版信息

Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac304.

Abstract

In biomedical research, the replicability of findings across studies is highly desired. In this study, we focus on cancer omics data, for which the examination of replicability has been mostly focused on important omics variables identified in different studies. In published literature, although there have been extensive attention and ad hoc discussions, there is insufficient quantitative research looking into replicability measures and their properties. The goal of this study is to fill this important knowledge gap. In particular, we consider three sensible replicability measures, for which we examine distributional properties and develop a way of making inference. Applying them to three The Cancer Genome Atlas (TCGA) datasets reveals in general low replicability and significant across-data variations. To further comprehend such findings, we resort to simulation, which confirms the validity of the findings with the TCGA data and further informs the dependence of replicability on signal level (or equivalently sample size). Overall, this study can advance our understanding of replicability for cancer omics and other studies that have identification as a key goal.

摘要

在生物医学研究中,人们非常希望研究结果在不同研究中具有可重复性。在这项研究中,我们专注于癌症组学数据,对于这些数据,可重复性的检验主要集中在不同研究中确定的重要组学变量上。在已发表的文献中,尽管已经引起了广泛的关注和专门的讨论,但缺乏对可重复性度量及其性质的定量研究。本研究旨在填补这一重要的知识空白。特别是,我们考虑了三个合理的可重复性度量,我们检验了它们的分布性质,并开发了一种进行推断的方法。将它们应用于三个癌症基因组图谱(TCGA)数据集,结果普遍表明可重复性较低,并且跨数据的变化显著。为了进一步理解这些发现,我们进行了模拟,这证实了 TCGA 数据的发现的有效性,并进一步说明了可重复性对信号水平(或等效于样本量)的依赖性。总的来说,这项研究可以增进我们对癌症组学和其他以识别为主要目标的研究的可重复性的理解。

相似文献

3
Onco-Multi-OMICS Approach: A New Frontier in Cancer Research.肿瘤多组学方法:癌症研究的新前沿。
Biomed Res Int. 2018 Oct 3;2018:9836256. doi: 10.1155/2018/9836256. eCollection 2018.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验