Heilongjiang Key Laboratory of Complex Intelligent System and Integration, Harbin University of Science and Technology, Harbin, 150040, China.
Heilongjiang Atomic Energy Research Institute, Harbin, 150086, China.
Phys Eng Sci Med. 2022 Sep;45(3):995-1004. doi: 10.1007/s13246-022-01157-9. Epub 2022 Jul 25.
In recent years, U-Net has shown excellent performance in medical image segmentation, but it cannot accurately segment nodules of smaller size when segmenting pulmonary nodules. To make it more accurate to segment pulmonary nodules in CT images, U-Net is improved to REMU-Net. First, ResNeSt, which is the state-of-the-art ResNet variant, is used as the backbone of the U-Net, and a spatial attention module is introduced into the Split-Attention block of ResNeSt to enable the network to extract more diverse and efficient features. Secondly, a feature enhancement module based on the atrous spatial pyramid pooling (ASPP) is introduced in the U-Net, which is utilized to obtain more abundant context information. Finally, replacing the skip connection of the U-Net with a multi-scale skip connection overcomes the limitation that the decoder subnet can only accept same-scale feature information. Experiments show that REMU-Net has a Dice score of 84.76% on the LIDC-IDRI dataset. The network has better segmentation performance than most other existing U-Net improvement networks.
近年来,U-Net 在医学图像分割中表现出了优异的性能,但在分割肺结节时,它无法准确地分割更小尺寸的结节。为了使 CT 图像中的肺结节分割更加准确,对 U-Net 进行了改进,得到了 REMU-Net。首先,将最新的 ResNet 变体 ResNeSt 用作 U-Net 的骨干网络,并在 ResNeSt 的 Split-Attention 块中引入空间注意力模块,使网络能够提取更多多样化和高效的特征。其次,在 U-Net 中引入了基于空洞空间金字塔池化(ASPP)的特征增强模块,用于获取更丰富的上下文信息。最后,用多尺度 skip connection 替换 U-Net 的 skip connection,克服了解码器子网只能接受同尺度特征信息的限制。实验表明,在 LIDC-IDRI 数据集上,REMU-Net 的 Dice 得分达到了 84.76%。该网络的分割性能优于大多数现有的 U-Net 改进网络。