Suppr超能文献

StainCUT:基于对比学习的染色归一化

StainCUT: Stain Normalization with Contrastive Learning.

作者信息

Gutiérrez Pérez José Carlos, Otero Baguer Daniel, Maass Peter

机构信息

Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany.

出版信息

J Imaging. 2022 Jul 20;8(7):202. doi: 10.3390/jimaging8070202.

Abstract

In recent years, numerous deep-learning approaches have been developed for the analysis of histopathology Whole Slide Images (WSI). A recurrent issue is the lack of generalization ability of a model that has been trained with images of one laboratory and then used to analyze images of a different laboratory. This occurs mainly due to the use of different scanners, laboratory procedures, and staining variations. This can produce strong color differences, which change not only the characteristics of the image, such as the contrast, brightness, and saturation, but also create more complex style variations. In this paper, we present a deep-learning solution based on contrastive learning to transfer from one staining style to another: StainCUT. This method eliminates the need to choose a reference frame and does not need paired images with different staining to learn the mapping between the stain distributions. Additionally, it does not rely on the CycleGAN approach, which makes the method efficient in terms of memory consumption and running time. We evaluate the model using two datasets that consist of the same specimens digitized with two different scanners. We also apply it as a preprocessing step for the semantic segmentation of metastases in lymph nodes. The model was trained on data from one of the laboratories and evaluated on data from another. The results validate the hypothesis that stain normalization indeed improves the performance of the model. Finally, we also investigate and compare the application of the stain normalization step during the training of the model and at inference.

摘要

近年来,已经开发了许多深度学习方法用于组织病理学全切片图像(WSI)的分析。一个反复出现的问题是,一个在一个实验室的图像上训练,然后用于分析另一个实验室图像的模型缺乏泛化能力。这种情况主要是由于使用了不同的扫描仪、实验室程序和染色差异。这会产生强烈的颜色差异,不仅会改变图像的特征,如对比度、亮度和饱和度,还会产生更复杂的风格变化。在本文中,我们提出了一种基于对比学习的深度学习解决方案,用于从一种染色风格转换到另一种染色风格:StainCUT。该方法无需选择参考帧,也不需要具有不同染色的配对图像来学习染色分布之间的映射。此外,它不依赖于CycleGAN方法,这使得该方法在内存消耗和运行时间方面都很高效。我们使用两个数据集对模型进行评估,这两个数据集由用两种不同扫描仪数字化的相同标本组成。我们还将其作为淋巴结转移语义分割的预处理步骤应用。该模型在其中一个实验室的数据上进行训练,并在另一个实验室的数据上进行评估。结果验证了染色归一化确实能提高模型性能的假设。最后,我们还研究并比较了染色归一化步骤在模型训练期间和推理时的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d2e/9317097/7a99980919cb/jimaging-08-00202-g0A1.jpg

相似文献

1
StainCUT: Stain Normalization with Contrastive Learning.
J Imaging. 2022 Jul 20;8(7):202. doi: 10.3390/jimaging8070202.
3
The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification.
Comput Methods Programs Biomed. 2023 Jun;234:107511. doi: 10.1016/j.cmpb.2023.107511. Epub 2023 Mar 26.
4
Efficient Staining-Invariant Nuclei Segmentation Approach Using Self-Supervised Deep Contrastive Network.
Diagnostics (Basel). 2022 Dec 2;12(12):3024. doi: 10.3390/diagnostics12123024.
5
Stain color translation of multi-domain OSCC histopathology images using attention gated cGAN.
Comput Med Imaging Graph. 2023 Jun;106:102202. doi: 10.1016/j.compmedimag.2023.102202. Epub 2023 Feb 24.
6
StainNet: A Fast and Robust Stain Normalization Network.
Front Med (Lausanne). 2021 Nov 5;8:746307. doi: 10.3389/fmed.2021.746307. eCollection 2021.
7
Seamless Virtual Whole Slide Image Synthesis and Validation Using Perceptual Embedding Consistency.
IEEE J Biomed Health Inform. 2021 Feb;25(2):403-411. doi: 10.1109/JBHI.2020.2975151. Epub 2021 Feb 5.
8
Data-driven color augmentation for H&E stained images in computational pathology.
J Pathol Inform. 2023 Jan 3;14:100183. doi: 10.1016/j.jpi.2022.100183. eCollection 2023.
9
Adversarial Stain Transfer for Histopathology Image Analysis.
IEEE Trans Med Imaging. 2018 Mar;37(3):792-802. doi: 10.1109/TMI.2017.2781228.
10
Self-Attentive Adversarial Stain Normalization.
Pattern Recognit (2021). 2021 Jan;12661:120-140. doi: 10.1007/978-3-030-68763-2_10. Epub 2021 Feb 21.

引用本文的文献

1
Stain Normalization of Histopathological Images Based on Deep Learning: A Review.
Diagnostics (Basel). 2025 Apr 18;15(8):1032. doi: 10.3390/diagnostics15081032.

本文引用的文献

2
Deep learning in histopathology: the path to the clinic.
Nat Med. 2021 May;27(5):775-784. doi: 10.1038/s41591-021-01343-4. Epub 2021 May 14.
3
Assessing the Impact of Color Normalization in Convolutional Neural Network-Based Nuclei Segmentation Frameworks.
Front Bioeng Biotechnol. 2019 Nov 1;7:300. doi: 10.3389/fbioe.2019.00300. eCollection 2019.
5
6
Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images.
IEEE Trans Med Imaging. 2016 Aug;35(8):1962-71. doi: 10.1109/TMI.2016.2529665. Epub 2016 Apr 27.
8
Stain Specific Standardization of Whole-Slide Histopathological Images.
IEEE Trans Med Imaging. 2016 Feb;35(2):404-15. doi: 10.1109/TMI.2015.2476509. Epub 2015 Sep 4.
10
Image segmentation with implicit color standardization using spatially constrained expectation maximization: detection of nuclei.
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):365-72. doi: 10.1007/978-3-642-33415-3_45.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验